Краткая теория вопроса. Пусть в покоящейся жидкости движется вверх перпендикулярно оси х пластинка со скоростью - средней скорости теплового движения молекул
Пусть в покоящейся жидкости движется вверх перпендикулярно оси х пластинка со скоростью - средней скорости теплового движения молекул. Пластинка увлекает за собой прилегающий слой жидкости, который в свою очередь увлекает за собой следующий слой и т.д. Т.о., вся жидкость как бы делится на тончайшие слои, скользящие вверх тем медленнее, чем дальше они находятся от движущегося тела. Очевидно, что при отсутствии взаимодействия между слоями жидкости и между жидкостью и пластинкой, каждый слой мог бы двигаться с произвольной скоростью, независимо от других. В действительности же распределение скоростей v(x) слоев газа от их расстояния до пластинки устанавливается в силу наличия вязкости, т.е. сил внутреннего трения в газе. Каждая молекула жидкости принимает участие в 2 движениях: хаотичном (тепловом) и направленном (коллективном). Вектор средней скорости равен нулю в силу хаотичности его направления у отдельных молекул, т.е. совокупность молекул, участвующих только в тепловом движении, в среднем будет оставаться на месте. При наличии же дополнительного направленного движения вся совокупность молекул в целом будет дрейфовать с постоянной скоростью v. Т.о. средний импульс отдельной молекулы в данном слое . Переходя из слоя в слой, молекулы переносят добавочное количество направленного движения, которое передается новому слою. Перемешивание молекул разных слоев (из-за хаотичности теплового движения) приводит к выравниванию скоростей переносного движения v разных слоев, что и проявляется макроскопически как действие сил трения между слоями. Т.е. природа этих сил заключается в том, что слои, движущиеся с разными скоростями, обмениваются молекулами: слои с более быстрыми молекулами передают некоторое количество движения медленному слою (ускоряют его), но теряя быстрые молекулы в обмен на более медленные сами при этом подвергаются торможению. Так, сила трения между слоями соответствующими скоростям и равна: , а сила трения, действующая на единицу площади границы соприкосновения соседних слоев: - закон Ньютона. Взаимодействие двух слоев можно рассматривать по закону Ньютона как процесс, при котором от одного слоя к другому передается в единицу времени импульс, по модулю равный действующей силе. Тогда можно записать: (1), где - плотность потока импульса – импульс, переносимый в ед. времени через ед. площадку (^-ю оси х) в положительном направлении оси х. - динамическая вязкость (коэффициент внутреннего трения) – выражается через силу трения между слоями, градиент скорости и площадь соприкосновения слоев: (2). Þ Коэффициент динамической вязкости равен силе внутреннего трения, возникающей на каждой единице поверхности соприкосновения слоев, движущихся один относительно другого с градиентом скорости, равным единице. Он зависит от природы жидкости и уменьшается с повышением ее температуры. Закон (1) определяет и силу трения, возникающую на границе между жидкостью и движущимся в ней твердым телом. Можно показать, что сила сопротивления, испытываемая шаром, движущимся в вязкой жидкости, прямо пропорциональна вязкости жидкости , радиусу шара r и скорости его движения : (3) - закон Стокса. Эта формула выводится в предположении, что выполняются некоторые условия, в частности: 1) движение жидкости имеет ламинарный (слоистый) характер; 2) жидкость по всем направлениям простирается безгранично, т.е. в своих далеких точках остается в покое. Из первого условия следует, что скорость движения шарика должна быть невелика, из второго – размеры сосуда, в котором находится жидкость, должны быть весьма велики по сравнению с размерами шарика. Т.е. она применима в случае тел достаточно малых размеров и малых скоростей их движения. При больших скоростях вокруг движущихся тел возникают сложные вихревые движения жидкости, и сила сопротивления возрастает пропорционально квадрату скорости .
|