Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Продольно-поперечный изгиб






Если к стержню одновременно приложены сжимающая сила и поперечные нагрузки, то возникает так называемый продольно-поперечный изгиб (см. рис. 15.3). Изгибающий момент можно определить как сумму двух моментов:

где - момент только от поперечной нагрузки.

Рис. 15.3

Составим дифференциальное уравнение оси изогнутого бруса:

Запишем его в следующем виде:

Общее решение уравнения (15.16) представляет собой сумму двух интегралов: интеграла однородного уравнения и частного интеграла, зависящего от правой части. Решение этой задачи сложно, особенно если для определения брус надо разбить на ряд участков. Поэтому, как правило, пользуются приближенным методом решения. Прогиб, вызываемый поперечной нагрузкой и осевой силой, можно представить как сумму прогибов:

где - прогиб, вызываемый только поперечной нагрузкой,

- дополнительный прогиб, появившийся в результате действия продольной силы F.

Если в дифференциальное уравнение (15.16) подставить выражение (15.17), то получим:

Но при действии только поперечной нагрузки справедливо равенство:

Поэтому из уравнения (15.18) с учетом равенства (15.19) получим:

или

Сделаем предположение, что дополнительные прогибы изменяются по закону синуса (в этом и заключается приближенность решения):

Тогда:

и

но, согласно формуле (15.21):

Подставляя полученное выражение в уравнение (15.20), имеем:

,

или, согласно равенству (15.17):

откуда:

Учитывая, что для рассматриваемого случая величина представляет собой выражение эйлеровой критической силы, окончательно получим:

 

Следует отметить, что формулой (15.22) нельзя пользоваться в тех случаях, когда сжимающая сила близка к критической. Тогда в знаменателе получается ноль и величина прогиба стремиться к бесконечности, что неверно (прогиб не может быть больше длины стержня). Формулой можно пользоваться при , что применимо для большинства инженерных расчетов.

 







Дата добавления: 2014-10-29; просмотров: 1070. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2022 год . (0.021 сек.) русская версия | украинская версия