Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Продольно-поперечный изгиб





Если к стержню одновременно приложены сжимающая сила и поперечные нагрузки, то возникает так называемый продольно-поперечный изгиб (см. рис. 15.3). Изгибающий момент можно определить как сумму двух моментов:

где - момент только от поперечной нагрузки.

Рис. 15.3

Составим дифференциальное уравнение оси изогнутого бруса:

Запишем его в следующем виде:

Общее решение уравнения (15.16) представляет собой сумму двух интегралов: интеграла однородного уравнения и частного интеграла, зависящего от правой части. Решение этой задачи сложно, особенно если для определения брус надо разбить на ряд участков. Поэтому, как правило, пользуются приближенным методом решения. Прогиб, вызываемый поперечной нагрузкой и осевой силой, можно представить как сумму прогибов:

где - прогиб, вызываемый только поперечной нагрузкой,

- дополнительный прогиб, появившийся в результате действия продольной силы F.

Если в дифференциальное уравнение (15.16) подставить выражение (15.17), то получим:

Но при действии только поперечной нагрузки справедливо равенство:

Поэтому из уравнения (15.18) с учетом равенства (15.19) получим:

или

Сделаем предположение, что дополнительные прогибы изменяются по закону синуса (в этом и заключается приближенность решения):

Тогда:

и

но, согласно формуле (15.21):

Подставляя полученное выражение в уравнение (15.20), имеем:

,

или, согласно равенству (15.17):

откуда:

Учитывая, что для рассматриваемого случая величина представляет собой выражение эйлеровой критической силы, окончательно получим:

 

Следует отметить, что формулой (15.22) нельзя пользоваться в тех случаях, когда сжимающая сила близка к критической. Тогда в знаменателе получается ноль и величина прогиба стремиться к бесконечности, что неверно (прогиб не может быть больше длины стержня). Формулой можно пользоваться при , что применимо для большинства инженерных расчетов.

 







Дата добавления: 2014-10-29; просмотров: 1244. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия