Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Эйлера для критической силы





Рассмотрим сжатый стержень в критическом состоянии, т.е. когда он слегка прогнулся (см. рис. 15.1). В произвольном сечении, взятом на расстоянии z от левого конца стержня, изгибающий момент от критической силы равен:

где - прогиб стержня.

 

 

Рис.15.1

Знак " минус" взят потому, что стержень изгибается концами вниз. Если бы стержень прогнулся дугой вниз, то момент был бы положительным, но прогиб - отрицательным, и произведение было бы все равно со знаком " минус".

Согласно формуле (11.1), дифференциальное уравнение изогнутой оси стержня примет вид:

При сжатии вдоль оси стержень всегда изгибается относительно той оси, момент инерции относительно которой минимальный. В этом можно убедиться, сжимая линейку. Поэтому в формуле (15.1) берем минимальный осевой момент инерции сечения.

Преобразуем уравнение (15.1):

Обозначив

получим:

Это линейное дифференциальное уравнение второго порядка. Его решение имеет вид:

Для определения произвольных постоянных А и В используем граничные условия.

При z = 0; y = 0;

Уравнение примет вид:

Как видно из уравнения (15.5), стержень изогнется по синусоиде.

Второе граничное условие:

При z = l; y = 0;

Это условие выполняется в двух случаях:

1) B = 0; 2) = 0.

Первый случай отбрасываем, так как при нем прогибы всех точек равны нулю, т.е. стержень остается прямым.

При втором случае:

Возьмем общий случай:

Возведем в квадрат обе части уравнения:

Вместо подставим его значение из формулы (15.2):

или

Принимая = 1, = 2 и т.д., получим последовательный ряд значений , которым соответствуют различные искривленные формы равновесия стержня. С точки зрения расчета на устойчивость нас интересует лишь наименьшее значение критической силы, так как уже при этом значении силы стержень теряет устойчивость. Поэтому = 1 и формула принимает вид:

Критическая сила зависит от способа закрепления концов стержня, поэтому вводится коэффициент - коэффициент приведенной длины (не путать с коэффициентом поперечной деформации). В общем случае формула Эйлера примет вид:

Значения коэффициента даны на рис. 15.2.

Рис. 15.2







Дата добавления: 2014-10-29; просмотров: 1513. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия