Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 3. Доказать свойство ассоциативности операции сложения, т.е





Доказать свойство ассоциативности операции сложения, т.е. (" а, b, c Î N)(а + b) + с = а + (b + с).

Решение.

Будем пользоваться аксиомой индукции A4.

Пусть натуральные числа а и b выбраны произвольно, а с принимает различные натуральные значения (индукция по с).

Обозначим через М множество всех тех и только тех натуральных чисел с, для которых равенство + b) + с = а + (b + с) верно.

M = {с\сÎ N, (а + b) + с = а + (b + с)}; т.к. с Î N, то М Ì N.

1. Докажем сначала, что 1 Î M, т.е. убедимся в справедливости ра­венства (а + b) + 1 = а + (b + 1). Действительно, по определению сложения, имеем (а + b) + 1 (а + b)' а + b' a + (b + 1), что и требовалось доказать (ч.т.д.) => 1 Î M.

2. Докажем теперь, что если сÎ M => с 'Î M. Пусть " с Î M (это предположение индукции – П.И.), т.е. равенство

(a + b) + c = а + (b + с) верно, докажем, что с 'Î M, т.е. равенство (а +b) + с' = а + (b + с') верно. Верность числовых равенств можно доказать одним из следующих приемов:

§ взять левую часть равенства, путем преобразований получить правую часть равенства;

§ взять правую часть равенства, путем преобразования получить левую часть равенства;

§ преобразовывая левую и правую части равенства, получить одинаковые числовые выражения.

Будем преобразовывать левую часть равенства.

(а + b) + с' ((а + b) + с)' (а + (b + с)) ' а + (b + с)' а +(b + с') ч.т.д. => с' Î M.

Итак, мы показали, что

M Ì N Ù (1Î M Ù (" с Î M Þ с'Î M)) => М = N, т. е. равенство (а + b) + с = а + (b + с) истинно для любого натурального числа с, а т.к. а и b выбирались произвольно, то оно справедливо для любых натуральных чисел а и b, что и требовалось до­казать.







Дата добавления: 2014-11-10; просмотров: 1045. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия