Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 3. Доказать свойство ассоциативности операции сложения, т.е





Доказать свойство ассоциативности операции сложения, т.е. (" а, b, c Î N)(а + b) + с = а + (b + с).

Решение.

Будем пользоваться аксиомой индукции A4.

Пусть натуральные числа а и b выбраны произвольно, а с принимает различные натуральные значения (индукция по с).

Обозначим через М множество всех тех и только тех натуральных чисел с, для которых равенство + b) + с = а + (b + с) верно.

M = {с\сÎ N, (а + b) + с = а + (b + с)}; т.к. с Î N, то М Ì N.

1. Докажем сначала, что 1 Î M, т.е. убедимся в справедливости ра­венства (а + b) + 1 = а + (b + 1). Действительно, по определению сложения, имеем (а + b) + 1 (а + b)' а + b' a + (b + 1), что и требовалось доказать (ч.т.д.) => 1 Î M.

2. Докажем теперь, что если сÎ M => с 'Î M. Пусть " с Î M (это предположение индукции – П.И.), т.е. равенство

(a + b) + c = а + (b + с) верно, докажем, что с 'Î M, т.е. равенство (а +b) + с' = а + (b + с') верно. Верность числовых равенств можно доказать одним из следующих приемов:

§ взять левую часть равенства, путем преобразований получить правую часть равенства;

§ взять правую часть равенства, путем преобразования получить левую часть равенства;

§ преобразовывая левую и правую части равенства, получить одинаковые числовые выражения.

Будем преобразовывать левую часть равенства.

(а + b) + с' ((а + b) + с)' (а + (b + с)) ' а + (b + с)' а +(b + с') ч.т.д. => с' Î M.

Итак, мы показали, что

M Ì N Ù (1Î M Ù (" с Î M Þ с'Î M)) => М = N, т. е. равенство (а + b) + с = а + (b + с) истинно для любого натурального числа с, а т.к. а и b выбирались произвольно, то оно справедливо для любых натуральных чисел а и b, что и требовалось до­казать.







Дата добавления: 2014-11-10; просмотров: 1045. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия