Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Правило вычитания суммы из суммы





S1 – S2, если S1=a + b, S2 = с + d и S1 > S2

(а + b)-(с + d) = (а – с) + (b – d), если а > с, b > d;

(а - d) + (b – с), если а > d, b > с.

 
 


(7+ 8) – (4+ 9) = 15 – 13 = 2;

Например, (7 + 4) – (5 + 3) = (7 – 5) + (4 – 3) = 2 + 1 = 3;

(6 + 8) – (7 + 4) = (6 – 4) + (8 – 7) = 2 + 1 = 3.

______________________________________________________________________

Определение 8. Делением натуральных чисел а и b называется операция «:», удовлетворяющая условию: а: b = с тогда и толь­ко тогда, когда b× с = а, или

Делением натуральных чисел а и b называется операция по на­хождению частного а: b.

___________________________________________________________________________________________________

______________________________________________________________________

Определение 9. Частным натуральных чисел а и b называется число с, такое, что b × с = а.

___________________________________________________________________________________________________

 

Символическая запись: а: b = с ($с)b× с = а.

Число а называется делимым, число b - делителем, число (а: b) – частным и число с – тоже частным.

Например:

1) Частным чисел 42 и 7 будет число 6, т.к. 7 × 6 = 42, (42: 7 = 6, т.к. 7 × 6 = 42).

2) Частное чисел 15 и 7 не существует, т.к. не существует такого натурального числа с, что 7× с = 15, (15: 7 – ; т.к. ( сÎ N × с = 15).

Теорема 7. Для того чтобы существовало частное двух натураль­ных чисел а и b, необходимо, чтобы b < а.

Теорема 8. Если частное натуральных чисел а и b существует, то оно единственно.

Из определения частного следует истинность утверждения (а: b) × b = а.

(Частное умножим на делитель – получим делимое).

Исходя из определения частного и условия его существования можно обосновать известные правила деления суммы, разности, произведения на число.







Дата добавления: 2014-11-10; просмотров: 940. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия