Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 3. 1. Доказать свойство ассоциативности операции сложения





1. Доказать свойство ассоциативности операции сложения.

2. Дать теоретико-множественное истолкование правила вычита­ния числа из суммы.

Решение. 1. Докажем, что (" а, b, cÎ N)(а + b) + с = a + (b + с).

Дадим теоретико-множественное истолкование числовых выра­жений, записанных в левой и правой частях этого числового раве­нства. Пусть

а = п(А); b = п(В); с = п(С); тогда а + b = п(АÈ В), если АÇ В = Æ, (а + b) + с = п((А È В)È С), если (АÈ В) Ç С = Æ,

b + с = п(В È C), если В Ç С = Æ, а +(b + с) = п(А È (В Ç С)), если А Ç (ВÈ С) = Æ.

Используя диаграммы Эйлера-Венна, множества А, В и С можно изобразить так:

 


Пользуясь свойством ассоциативности операции объединения множеств, получаем

(" A, B, С) (A È B ) È C = А È (В È С) Þ п((АÈ B)È С) = п(АÈ (ВÈ С)) Þ (а +b) + с = а + (b + с)

(равные множества имеют и равное число элементов).

2. Рассмотрим один из способов вычитания, например (а + b)–с =(а – с)+b, если а> с. Пусть а = п(А); b = п(В); с = п(С). Дадим теоре­тико-множественное истолкование числовых выражений, запи­санных в левой и правой частях этого числового равенства. Для левой части равенства получим:

а + b = п(А È В), если А Ç B = Æ,

(а + b) – с = п((АÈ В)\С), если С Ì А È В.

Используя диаграммы Эйлера-Венна, множества А и В можно изобразить так:

 

 

Множество С может быть подмножеством А или В. Рассмотрим случай, когда С Ì А.

В правой части равенства получим:

а – с = п(А\C, т.к. С Ì А, (а – с) + b = п((А\С) È В), если (А\С) Ç B = Æ.

 

В этом случае множества изображаются так:

 

В

 

 

В левой части равенства круг для множества С расположен внутри круга для множества А.

Можно доказать, что (А È В) \ С = (А \ С) È В. Так как равные множества имеют равное число элементов, получаем:

п((АÈ В)\С) = п((А \С) È В) => (а + b) – с = (а – с) + b.







Дата добавления: 2014-11-10; просмотров: 1193. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия