Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 3. 1. Доказать свойство ассоциативности операции сложения





1. Доказать свойство ассоциативности операции сложения.

2. Дать теоретико-множественное истолкование правила вычита­ния числа из суммы.

Решение. 1. Докажем, что (" а, b, cÎ N)(а + b) + с = a + (b + с).

Дадим теоретико-множественное истолкование числовых выра­жений, записанных в левой и правой частях этого числового раве­нства. Пусть

а = п(А); b = п(В); с = п(С); тогда а + b = п(АÈ В), если АÇ В = Æ, (а + b) + с = п((А È В)È С), если (АÈ В) Ç С = Æ,

b + с = п(В È C), если В Ç С = Æ, а +(b + с) = п(А È (В Ç С)), если А Ç (ВÈ С) = Æ.

Используя диаграммы Эйлера-Венна, множества А, В и С можно изобразить так:

 


Пользуясь свойством ассоциативности операции объединения множеств, получаем

(" A, B, С) (A È B ) È C = А È (В È С) Þ п((АÈ B)È С) = п(АÈ (ВÈ С)) Þ (а +b) + с = а + (b + с)

(равные множества имеют и равное число элементов).

2. Рассмотрим один из способов вычитания, например (а + b)–с =(а – с)+b, если а> с. Пусть а = п(А); b = п(В); с = п(С). Дадим теоре­тико-множественное истолкование числовых выражений, запи­санных в левой и правой частях этого числового равенства. Для левой части равенства получим:

а + b = п(А È В), если А Ç B = Æ,

(а + b) – с = п((АÈ В)\С), если С Ì А È В.

Используя диаграммы Эйлера-Венна, множества А и В можно изобразить так:

 

 

Множество С может быть подмножеством А или В. Рассмотрим случай, когда С Ì А.

В правой части равенства получим:

а – с = п(А\C, т.к. С Ì А, (а – с) + b = п((А\С) È В), если (А\С) Ç B = Æ.

 

В этом случае множества изображаются так:

 

В

 

 

В левой части равенства круг для множества С расположен внутри круга для множества А.

Можно доказать, что (А È В) \ С = (А \ С) È В. Так как равные множества имеют равное число элементов, получаем:

п((АÈ В)\С) = п((А \С) È В) => (а + b) – с = (а – с) + b.







Дата добавления: 2014-11-10; просмотров: 1193. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия