Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения. 289. Доказать коммутативный закон сложения натуральных чисел





289.Доказать коммутативный закон сложения натуральных чисел.

290. Составить таблицу прибавления 3 со всеми теоретическими обоснованиями.

291. Доказать, что для любых натуральных чисел а и b верны утверждения:

a) а +b ¹ b

б) а +b > a Ù a + b > b

292. Доказать, что для любых натуральных чисел а, b и с верны утверждения:


a) а= b => а + с = b + с;

б) а + b= а + с => b = с;

в) а = b => ас = bс;

г) ас = bс => а = b;

д) аb = ас => b = с.


293. Составить таблицу прибавления 4 со всеми теоретическими обоснованиями.

294. Докажите, что для любых натуральных чисел а, b и с верны утверждения:


а) а< b => а + с < b + с;

б) а + с < b + с => а < b;

в) а + b < а + с => b < с;

г) а > b => а + с > b + с;

д) а + с > b + с => а > b;

е) а + b > a + с => b > c.


295. Составить таблицу прибавления 5 и 6 со всеми теоретическими обоснованиями.

296. Составить таблицу прибавления 7, 8 и 9 со всеми теоретическими обоснованиями.

297. Применяя законы сложения вычислить результат; каждый случай применения законов объяснить:


а) 57689+ 48997+ 42311;

б) 73562 + 3463 + 26438;

в) 3186+ 48763+ 6814;

г) 6747+17896+ 3253;

д) 42879+ (37999+ 57121).


298. Доказать дистрибутивность справа умножения относительно сложения.

299. Докажите, что для любых натуральных чисел а, b и с верны утверждения:


а) а < b => ас < bс;

б) ас < bс => а < b;

в) аb < ас => b < с;

г) а > b => ас > bс;

д) ас > bс => а > b;

е) аb > ас => b > с.


300. Доказать, что каждое из ниже указанных отношений, заданных на множестве натуральных чисел, является отношением порядка:

а) отношение «меньше»;

б) отношение «больше».

301. Доказать, что для любых натуральных чисел а и b существует такое натуральное число п, что пb > а. Привести примеры.

302. Используя определения отношений «меньше», «больше», докажите истинность следующих утверждений:

а) 5 < 7;

б) 6 > 3.

303. Используя теоретические положения, объясните истинности следующих утверждений:


а) 3 + 7 > 3 + 6;

б) 5 + 4 < 9 + 4;

в) 4 ∙ 7 > 4 ∙ 5;

г) 3 ∙ 6 < 5 ∙ 6;

д) 5 ∙ 7 < 7 ∙ 9;

е) 5 + 4> 4 + 3;

ж) 7 ∙ 4 > 4 ∙ 3;

з) 3 + 6 < 6 + 5.


304. Какие теоретические положения неявно используют учащиеся при выполнении задания:

а) заполни пропуски так, чтобы получились верные равенства и неравенства:

9 ∙ 6 = 6 ∙ □; 8 ∙ 3 > 8 ∙ □; 78 + 18 < 78 + □.

б) верны ли следующие записи:

32 + 40 < 32; 27 + 30 > 27?

в) >; <?

70 + 15 * 70 + 18; 14 + 46 * 12 + 46.

305.Какие свойства умножения могут быть использованы принахождении значения выражения:


а) 5 ∙ (10 + 6);

б) 125 ∙ 14 ∙ 5;

в) (8 ∙ 137) ∙ 125;

г) 48 ∙ 125?


306. Известно, что 37 ∙ 3 = 111. Используя это равенство, вычислите:

а) 37 ∙ 21; б) 185 ∙ 18.

307. Опираясь на коммутативные законы умножения и сложения, напишите выражения, равные (т + п)а.

308. Составить со всеми теоретическими обоснованиями таблицы умножения на числа:

а) 3; б) 4; в) 5; г) 6 и 7; д) 8 и 9.

309. Применяя законы умножения, вычислите результат:

а) 4 ∙ 5 ∙ 2 ∙ 25 ∙ 17;

б) 8 ∙ 7252 ∙ 125;

в) 7546 ∙ 5 ∙ 25 ∙ 4 ∙ 2;

г) 2 ∙ 3246 ∙ 5 ∙ 250 ∙ 4;

д) 4 ∙ 6524 ∙ 25.

310.Какие свойства умножения будут использовать учащиеся начальных классов, выполняя следующие задания:

1) Можно ли, не вычисляя, сказать, значения каких выражений будут одинаковы:

а) 2 ∙ 5 + 2 ∙ 3; б) 5 ∙ (3 + 2); в) (5 + 3) ∙ 2.

2) Верны ли равенства:

а) 19 ∙ 5 ∙ 2 = 19 ∙ (5 ∙ 2); в) 3 ∙ 5 + 8 ∙ 5 = (3 + 8) ∙ 5;

б) (4 ∙ 10) ∙ 13 ∙ 4 ∙ 10 ∙ 31; г) 7 ∙ (6 + 8) = 7 ∙ 6 + 8 ∙ 7.

3) Можно ли, не выполняя вычислений, сравнить значения выражений:

а) 60 ∙ 42 + 3 ∙ 42…63 ∙ 40 + 63 ∙ 2;

б) 59 ∙ 90 + 59 ∙ 5…50 ∙ 95 + 9 ∙ 95.

311. Не выполняя вычисления, вместо звездочки поставьте знак = или <, чтобы получилось истинное высказывание:


а) 354 + 246 * 354 + 246;

б) 273 + 475 * 237 + 456;

в) 271 + 543 * 271+ 537;

г) 237 + 425 * 273 + 425;

д) 546 ∙ 34 * 546-31;

е) 329 ∙ 78 * 329 ∙ 84;

ж) 513 ∙ 73 * 513 ∙ 73;

з) 275 ∙ 94 * 257 ∙ 94;

и) 25 ∙ 41 + 4 ∙ 41 * 20 ∙ 41 + 9 ∙ 41;

к) 73 ∙ 28 + 5 ∙ 29 * 20 ∙ 78 + 9 ∙ 78;

л) 53 ∙ 38 + 4 ∙ 38 * 30 ∙ 59 + 8 ∙ 59;

м) 32 ∙ 52 + 5 ∙ 52 * 50 ∙ 32 + 2 ∙ 32.


Доказать методом М.И. следующие предложения:

1) (8n + 6): 7

2) 1 + 3 + 5 + … + (2n – 1) = n2

3) 12 + 22 + 32 + … + n2 =

4) (n3 + 5n): 6

5) (62n-1 + 1): 7

6) (4n – 1): 3

Дать теоретическое обоснование вашему выбору.

312. Сформулировать и дать теоретическое обоснование правил:

а) прибавления числа к сумме;

б) прибавления суммы к числу;

в) прибавления суммы к сумме. Проиллюстрировать примерами.







Дата добавления: 2014-11-10; просмотров: 1335. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия