Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Итерационные методы





Методы Ньютона (касательных) и итераций являются итеративными (итерационными), на основе некоторого приближения корня xk они позволяют на каждой итерации получать новое приближение xk+1. При этом используется информация о первой производной функции. Вместо условия (2.1.3) в итеративных методах оценивается расстояние между последним и предпоследним приближениями корня:

|xk+1 – xk| < ε. (2.1.13)

При этом нужно знать начальное приближение x0, а дальнейшие приближения на каждой k+1-й итерации находятся по итеративной формуле:

xk+1 = φ (xk). (2.1.14)

В методе Ньютона начальное приближение выбирается в соответствии со следующим условием: если в некоторой точке x произведение f (x) f " (x) > 0, то точка x является подходящей для начала итерационного процесса. Проверяются границы интервала:

(2.1.15)

На практике может наблюдаться ситуация, когда оба условия (2.1.15) не выполняются. В этом случае вместо второго условия можно использовать оператор «иначе», либо воспользоваться вторым критерием.

Если вторая производная функции не известна, можно воспользоваться другим критерием. Вычислим точку c по формуле (2.1.9), и далее

(2.1.16)

Если начальная точка определена неправильно, то найденное решение уравнения (2.1.1) может находиться за пределами отрезка [a, b].

Функция φ (xk) в (2.1.14) для метода Ньютона выглядит следующим образом:

(2.1.17)

В методе итераций, если выполняется неравенство |φ '(x)| < 1, процесс сходится независимо от выбора начальной точки. Поэтому можно брать любую из границ интервала, его середину и т.п. А функция φ (xk) в (2.1.14) выглядит следующим образом:

(2.1.18)

В отличие от интервальных методов, длина исследуемого отрезка в которых на каждой итерации гарантированно уменьшается (например, для метода дихотомии – в два раза, для метода золотого сечения – в γ раз), в итеративных методах, в общем случае, расстояние между последовательными приближениями корня может иногда и увеличиваться. То же самое касается и значения функции в этих точках – оно может как уменьшаться, так и увеличиваться. Поэтому для некоторых функций условия (2.1.3) и (2.1.4) могут не выполняться в течение довольно большого числа итераций (или вообще никогда). В этом случае итерации следует прекращать при выполнении хотя бы одного условия.







Дата добавления: 2014-11-10; просмотров: 506. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия