Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Практические работы





Рассмотрим подробнее спецификации каждой практической работы.

2.1. Практическая работа №1 «Решение уравнений с одной переменной»

Обязательных методов  
Баллов за обязательные методы  
Дополнительных методов  
Баллов за дополнительные методы  
Количество вариантов  

 

В ходе данной практической работы необходимо реализовать ряд методов решения уравнений

f (x) = 0, (2.1.1)

где x [a, b] – скалярный аргумент функции f. При этом предполагается, что отделение корней уже произведено, т.е. на отрезке [a, b] находится только одно решение уравнения (2.1.1) ξ [a, b], или, другими словами, только один нуль функции f (x), т.е. f (ξ) ≡ 0. В этом случае выполняется условие

f (a) f (b) ≤ 0. (2.1.2)

Решение должно быть найдено с абсолютной погрешностью по аргументу ε и/или абсолютной погрешностью по значению функции δ, т.е.

|ξ – x*| < ε и/или (2.1.3)

| f (x*)| < δ, (2.1.4)

где ξ – точное решение уравнения (2.1.1), а x* – приближенное.

Зачем использовать две различные погрешности? Дело в том, что, в зависимости от вида функции, погрешность решения по аргументу и по значению функции могут не совпадать. Например, рассмотрим быстро растущую функцию. Из рисунка 2.1.1 видно, что даже если по аргументу требуемая точность решения достигнута, то по значению функции – нет. Такая же ситуация будет наблюдаться для быстро убывающей функции (т.е. для любой функции, имеющей на исследуемом отрезке большую производную).

Рис. 2.1.1 – Пример функции с большим (по модулю) значением производной вблизи корня

Обратная ситуация будет наблюдаться для функции с малыми значениями производной – при достижении требуемой точности по значению функции, точность по аргументу достигнута не будет (рис. 2.1.2).

Для упрощения можно положить ε = δ. Так как точный корень нам неизвестен, то условие (2.1.3) в численных методах заменяют другими, альтернативными, условиями, которые мы рассмотрим ниже.

Рис. 2.1.2 – Пример функции с малым (по модулю) значением производной вблизи корня







Дата добавления: 2014-11-10; просмотров: 578. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия