Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интервальные методы





Методы дихотомии, хорд и золотого сечения являются интервальными, т.е. их смысл заключается в уменьшении исходного интервала, содержащего корень, до тех пор, пока размеры интервала не окажутся соизмеримы с требуемой погрешностью.

Для этих методов интервалом поиска корня на некоторой k-й итерации будет являться отрезок [ak, bk], при этом a0 = a, b0 = b. Длина интервала в интервальных методах гарантированно уменьшается на каждой итерации решения, поэтому альтернативой условию (2.1.3) будет, очевидно, условие

(2.1.5)

т.к. погрешность определения корня не может превышать половины длины интервала.

В методе дихотомии интервал разбивается следующим образом. Вычисляется точка, расположенная в середине отрезка:

(2.1.6)

Далее, согласно (2.1.2), проверяется, какому из интервалов – [ak, сk] или [сk, bk] – принадлежит корень. Т.е.,

(2.1.7)

В качестве k-го приближения корня берется точка

(2.1.8)

В методе хорд интервал разбивается другой точкой:

(2.1.9)

Выбор интервала осуществляется согласно (2.1.7), а новое приближение корня совпадает с точкой ck (xk = ck). Однако, в отличие от других интервальных методов, в методе хорд постоянное уменьшение длины интервала не гарантировано, поэтому погрешность рассчитывается по формуле итерационных методов (2.1.13).

В методе золотого сечения интервал разбивается двумя симметричными относительно границ интервала точками:

(2.1.10)

где

Для упрощения вычислений можно учесть упомянутую симметричность расположения точек ck и dk:

ck – ak = bk – dk. (2.1.11)

Далее, согласно (2.1.2), проверяется, какому из интервалов – [ak, dk] или [сk, bk] – принадлежит корень. Т.е.,

(2.1.12)

Новое приближение корня вычисляется по формуле (2.1.8).







Дата добавления: 2014-11-10; просмотров: 577. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия