Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение типовых задач. 2.4. Оформление полученных результатов в виде табл





Задание 4.3.2.1. По данным табл. 4.3.2.1, характеризующим объем продаж спортивного оборудования для футбола, постройте модель ARIMA (p, q, 0), предварительно убедившись на 95%-ном уровне значимости в интеграции данного временного ряда и определив порядок авторегрессии. С помощью построенной модели осуществите прогнозные расчеты на два последующих периода.

Т а б л и ц а 4.3.2.1

Год Назначение оборудования:
физические упражнения гольф кэмпинг бейсбол футбол теннис
             
             
             
             
             
             
             
             
             
             
             
             
             
             

Решение с помощью табличного процессора Excel.

1. Ввод исходных данных и оформление их в виде табл. 4.3.2.2.

Т а б л и ц а 4.3.2.2

 

                         
                         

 

2. Проверка временного ряда на стационарность с помощью критерия Дики – Фуллера, т.е. проверка гипотезы

,

значительно меньше нуля.

2.1.Оценка с помощью метода наименьших квадратов (пакета анализа данных Excel) параметров модели

.

(9, 349) (0, 068)

2.2. Расчет статистики

и сравнение ее с критическим значением расширенного критерия Дики – Фуллера на 95%-ном уровне значимости, равным

.

Для данного уровня значимости ряд нестационарен, так как .

2.3. Разностное представление временного ряда

и оформление результатов в виде табл. 4.3.2.3.

Т а б л и ц а 4.3.2.3

 

    -1       -4       -3  
      -1       -4       -3

 

2.4. Оценка с помощью метода наименьших квадратов параметров модели

.

(2, 387) (0, 252)

2.5. Расчет статистики

и сравнение ее с критическим значением расширенного критерия Дики – Фуллера на 95%-ном уровне значимости

.

Для данного уровня значимости ряд стационарен, так как и, следовательно, мы имеем дело с процессом I (1).

3. Определение порядка авторегрессии для преобразованного ряда.

3.1. Расчет частных коэффициентов автокорреляции.

Частный коэффициент автокорреляции первого порядка равен коэффициенту автокорреляции первого порядка, т.е. . Частный коэффициент автокорреляции второго порядка равен последнему коэффициенту авторегрессионного уравнения второго порядка, т.е. для его получения необходимо построить авторегрессионное уравнение второго порядка с помощью пакета анализа Excel по данным табл. 4.3.2.4.

Т а б л и ц а 4.3.2.4

 

  -1       -4       -3  
    -1       -4       -3
      -1       -4      

 

.

Получили, что значение частного коэффициента автокорреляции резко падает, следовательно, для преобразованного временного ряда имеет смысл строить модель ARIMA (1, 1, 0).

3.2. Осуществление прогнозных расчетов по авторегрессионной модели первого порядка, построенной в п. 2.4:

,

,

,

,

.

Задание 4.3.2.2. Руководство плодово-овощного концерна «Витамин», владеющего большими яблоневыми садами в настоящее время желает заглянуть в перспективу, чтобы ответить на вопрос о целесообразности дальнейшего расширения этих садов. С этой целью было решено построить ARMA -модель, с помощью которой получить прогнозные оценки потребления яблок в следующие два года. Данные, отражающие динамику среднегодового потребления яблок населением г. Воронежа (y, т.), представлены в табл. 4.3.2.5.

Т а б л и ц а 4.3.2.5

 

T                  
Y                  
T                  
Y                  
T                  
Y                

Решение табличного процессора Excel

1. Ввод исходных данных и оформление их в удобном для проведения расчетов виде.

2. Настройка параметра .

2.1. Присвоение первоначального значения параметру

.

2.2. Расчет преобразованных значений по следующим формулам:

, , .

(Два последних значения будут использоваться в качестве контрольной выборки для настройки параметра ).

2.3. Формирование ряда значений , .

2.4. Оформление полученных результатов в виде табл. 4.3.2.6.

Т а б л и ц а 4.3.2.6

 

            6521, 01 6610, 13
            6412, 10 6521, 01
    5420, 80       6591, 21 6412, 10
    5452, 08 5420, 80     6779, 12 6591, 21
    6405, 21 5452, 08     6907, 91 6779, 12
    6400, 52 6405, 21     7360, 79 6907, 91
    6590, 05 6400, 52     7546, 08 7360, 79
    6779, 01 6590, 05     7494, 61 7546, 08
    5727, 90 6779, 01     7679, 46 7494, 61
    5712, 79 5727, 90     7637, 95 7679, 46
    6401, 28 5712, 79     8113, 79 7637, 95
    6610, 13 6401, 28     8491, 38 8113, 79

2.5. Нахождение текущих значений параметров регрессии

,

с помощью «Пакета анализа» Excel (см. Вывод итогов 4.3.2.1).

Таким образом, , , а сама модель записывается в виде

.

2.6. Расчет параметров регрессии для исходного ряда

; .

Следовательно, модель для исходных данных записывается в виде

.

2.7. Вычисление по построенной модели прогнозных значений для моментов времени 25; 26.

2.8. Определение суммы квадратов отклонений прогнозных от фактических значений потребления яблок.

 

ВЫВОД ИТОГОВ 4.3.2.1          
             
Регрессионная статистика          
Множественный R 0, 900037          
R-квадрат 0, 810067          
Нормированный R-квадрат 0, 801023          
Стандартная ошибка 378, 3206          
Наблюдения            
             
Дисперсионный анализ        
  df SS MS F Значимость F
Регрессия       89, 56557 5, 04E-09  
Остаток     143126, 4      
Итого            
             
  Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 683, 5531 642, 6216 1, 063695 0, 299546 -652, 852 2019, 958
Переменная X 1 0, 919154 0, 097122 9, 463909 5, 04E-09 0, 717178 1, 12113

 

2.9. Оформление полученных результатов в виде табл. 4.3.2.7.

Т а б л и ц а 4.3.2.7

    7674, 30 21228, 71
    7802, 98 5326, 19
26554, 91

 

2.10. Последовательное изменение параметра в интервале (0; 1) с шагом 0, 1 и проведение всех расчетов п. 2.1-2.9. Оформление промежуточных результатов в виде табл. 4.3.2.8.

Т а б л и ц а 4.3.2.8

 

0, 1 0, 2 0, 3 0, 4 0, 5
26554, 9 43026, 3 78931, 6    
0, 6 0, 7 0, 8 0, 9  
    53245, 1 25672, 8

 

2.11. Уточнение параметра =0, 90 с шагом 0, 01 и проведение всех расчетов п. 2.1-2.9. Оформление промежуточных результатов в виде табл. 4.3.2.9.

 

Т а б л и ц а 4.3.2.9

 

0, 91 0, 92 0, 93 0, 94 0, 95 0, 96
25082, 25 25048, 00 25615, 18 26830, 12 28740, 29 31393, 99

 

Таким образом, оптимальным параметром является = 0, 92.

3. Построение прогнозной модели с использованием оптимального параметра = 0, 92 путем последовательного выполнения шагов 2.2. – 2.6 для . В результате получится модель, которая записывается в виде

.

4. Расчет по построенной модели прогнозных оценок потребления яблок на два года

,

.

 







Дата добавления: 2014-11-10; просмотров: 736. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия