Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическая часть. Нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A= {mA(х) /х}





Нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = {mA(х) /х}, где mA(х) – характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = [ 0, 1 ]). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A. Множество M называют множеством принадлежностей. Если M = { 0, 1 }, то нечеткое подмножество A может рассматриваться как обычное или четкое множество.

Для построения функции принадлежности используются прямыеметоды, когда эксперт либо просто задает для каждого xÎ E значение m A (x), либо определяет функцию совместимости. При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкретное лицо и каждый должен дать один из двух ответов: “этот человек лысый” или этот человек не лысый”, тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение m" лысый" (данного лица).

Косвенные методы определения значений функции принадлежности используются в случаях, когда нет элементарных измеримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравнений. Если бы значения функций принадлежности были нам известны, например, m A (xi) = w i, i = 1, 2,..., n, то попарные сравнения можно представить матрицей отношений A = {aij}, где aij = w i/ wj (операция деления).

На практике эксперт сам формирует матрицу A, при этом предполагается, что диагональные элементы равны 1, а для элементов симметричных относительно диагонали aij = 1 / aij, т.е. если один элемент оценивается в a раз сильнее чем другой, то этот последний должен быть в 1/a раз сильнее, чем первый. Доказано [3], что в общем случае задача сводится к поиску вектора w, удовлетворяющего уравнению вида А w = lmaxw, где lmax – наибольшее собственное значение матрицы A. Имеет место теорема Перрона, согласно которой для матрицы А с положительными элементами решение данной задачи существует и является положительным.

В случае идеальной согласованности экспертных оценок должно выполняться соотношение . (1)

В этом случае lmax совпадает с n – размерностью матрицы А. В случае нарушения условия (1) lmax меньше n. Таким образом, величина разности lmax – n может служить мерой согласованности экспертных оценок.

Для вычисления lmax можно рекомендовать метод скалярных произведений. Метод основан на следующем соотношении:

,

при произвольном векторе у0. Для вычислений удобнее строить две последовательности векторов: уk = Аkу0 и zk = (АT)kу0. Тогда

.

Для того чтобы определить операции над нечёткими множествами нужно определить функцию принадлежности результирующего множества.

1. Дополнение. Пусть M = [0, 1], A – нечеткое множество, заданное на E. Множество имеет функцию принадлежности .

2. Пересечение. A Ç B – наибольшее нечеткое подмно-жество, содержащееся одновременно в A и B, т.е.

m A Ç B (x) = min{m A (x), m B (x)}.

3. Объединение.А È В – наименьшее нечеткое подмно-жество, включающее как А, так и В, с функцией принадлежности

m A È B (x) = max {(m A (x), m B (x)}.

4. Разность. А \ B= А Ç с функцией принадлежности

m A \ B (x) = min { m A (x), 1 – m B (x)}.







Дата добавления: 2014-11-10; просмотров: 632. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия