Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример выполнения работы. 1. Определить нечёткое множество «молодые люди»





1. Определить нечёткое множество «молодые люди».

Решение.

В качестве характеристического параметра человека x будем рассматривать его возраст , . Всюду в дальнейшем для краткости записи формул через x будем обозначать его характеристический параметр .

a) Определим интервал, на котором . Положим, что если , то , а если , то . Следовательно, если , то . Для построения функции принадлежности зададим значения степени принадлежности элементов в конечном множестве точек. Для этого разобьём интервал на n равных частей (например, пусть , тогда ). Выступим в роли экспертов и зададим во внутренних точках разбиения степени принадлежности элемента нечёткому множеству «молодые люди».

           
  0, 9 0, 7 0, 4 0, 1  

 

b) Построим аппроксимацию функции . При её построении будем использовать элементарные кривые. Например, через первые и последние 3 точки проведём параболы, а 2 средние точки (28; 0, 7) и (32; 0, 4) соединим прямой.

Определим коэффициенты параболы , проходящей через точки (20; 1), (24; 0, 9), (28; 0, 7). Решив систему линейных уравнений

, (*)

получим .

Прямая, проходящая через точки (28; 0, 7) и (32; 0, 4), задаётся формулой .

Коэффициенты параболы , проходящей через точки (32; 0, 4), (36; 0, 1), (40; 0), можно определить, решив аналогичную (8) систему линейных уравнений. В этом случае получим . Однако, нетрудно заметить, что вершина данной параболы находится в точке (40; 0), поэтому она имеет вид . Подставив в уравнение значения двух других точек и решив полученную систему уравнений, определим неизвестные параметры .

Таким образом,

c) Построим матрицу парных сравнений для определения значений функции принадлежности в конечном множестве точек косвенным методом. Так как человек, имеющий меньший возраст моложе, то элементы матрицы , находящиеся выше главной диагонали > 1.

Данная матрица не является идеально согласованной.

 

2. Даны множества:

  Множество Степень принадлежности элемента
x1 x2 x3 x4 x5
A 1/2 1/5 2/3 2/5  
B 1/4   3/5 7/8  
C 0.2 0.6 2/7 1/3 0.4

Найти:

a) ;

b)

c) .

Решение.

a) Так как , то

b)

c)







Дата добавления: 2014-11-10; просмотров: 487. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2024 год . (0.015 сек.) русская версия | украинская версия