Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТОЧЕЧНЫЕ ОЦЕНКИ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ





На практике все результаты измерений и случайные погрешности являются величинами дискретными. При использовании дискретных СВ возникает задача нахождения точечных оценок параметров их функций распределения на основаниистатистической совокупности, которая в этом случае называется выборкой. Выборка должна быть репрезентативной (представительной), то есть должна хорошо представлять генеральную совокупность. Генеральная совокупность - статистическая совокупность, содержащая в себе все возможные значения СВ.

Оценка параметра называется точечной, если она выражается одним числом. Точечная оценка может быть состоятельной, несмещенной и эффективной.

Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики.

Несмещенной называется оценка, математическое ожидание которой равно оцениваемой числовой характеристике.

Эффективной называется несмещенная оценка, имеющая наименьшую дисперсию из нескольких оценок.

Точечной оценкой математического ожидания(МО) результата измерений является среднее арифметическое значение измеряемой величины

,

где n – объем выборки; хi – значение СВ.

При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов.

Точечная оценка дисперсии (состоятельная и несмещенная) определяется по формуле

.

Среднее квадратическое отклонение(СКО) СВ определяется как корень квадратный из дисперсии. Однако операция извлечения корня является нелинейной процедурой и приводит к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводится поправочный множитель k(n), зависящий от числа наблюдений (объема выборки n). Он изменяется от k(3) = 1, 13 до k(¥)» 1, 03. Тогда оценка СКО

.

Полученные оценки МО и СКО являются СВ. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки и . Так как большое число измерений проводится довольно редко, то возникающая по этой причине погрешность обычно значительно больше погрешности, из-за смещенности оценки, обусловленной извлечением квадратного корня. Поэтому на практике поправочным множителем пренебрегают, то есть считают его равным 1.

Точечные оценки других параметров распределений (коэффициента асимметрии, эксцесса) используются значительно реже.







Дата добавления: 2014-11-10; просмотров: 2835. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия