Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДОВЕРИТЕЛЬНАЯ ВЕРОЯТНОСТЬ И ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ





На практике важно не только получить точечную оценку, но и определить интервал, называемый доверительным, между границами которого с заданной доверительной вероятностью

,

где - уровень значимости; - нижняя и верхняя границы интервала, находится истинное значение оцениваемого параметра.

1.В общем случае, при любом законе распределения СВ, доверительные интервалы можно определять, на основе неравенства Чебышева. Оно определяет вероятность того, что результат измерения не отличается от среднего значения больше чем на половину доверительного интервала

,

где оценка СКО распределения; - положительное число.

Принимая доверительную вероятность Р из неравенства можно определить значение t (табл.2.1).

Таблица 2.1

Таблица вероятностей распределения Чебышева

 

P 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 85 0, 89 0, 90 0, 92 0, 95 0, 96 0, 98
t 1, 2 1, 3 1, 42 1, 6 1, 84 2, 21 2, 6 3, 0 3, 16 3, 52 4, 47 5, 0 7, 07

 

Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверительной вероятности 0, 9 для многих законов распределений соответствует доверительный интервал 1, 6s, а по неравенству Чебышева 3, 16s. В связи с этим оно не получило широкого распространения.

2. Для нормально распределенной СВ и при большом количестве наблюдений (измерений), интервальная оценка определяется следующим образом:

- определяется точечная оценка МО и СКО по приведенным выше формулам.

- выбирается доверительная вероятность Р из рекомендуемого ряда значений 0, 90; 0, 95; 0, 99.

- находятся верхняя и нижняя границы доверительного интервала по уравнениям

, ,

где n – количество измеренных значений(объем выборки); - аргумент функции Лапласа , отвечающей вероятности Р/2. Половина длины доверительного интервала , называется доверительной границей погрешности результата измерений.

3. Для нормально распределенной СВ, но при малом количестве наблюдений (измерений), что обычно бывает на практике, верхняя и нижняя границы доверительного интервала определяются по уравнениям

, .

А половина длины доверительного интервала равна

,

где -коэффициент Стьюдента, рассчитанный для различных значений доверительной вероятности и числа измерений, табулирован.

4. В тех случаях, когда распределение СВ не является нормальным, все же часто пользуются распределением Стьюдента с приближением, степень которого остается неизвестной. Распределение Стьюдента применяют при числе измерений n < 30, поскольку уже при n = 20¸ 30 оно переходит в нормальное. Результат измерения записывается в виде ; Р = Рд, где Рд – конкретное значение доверительной вероятности.

Полученный результат измерения не является одним конкретным числом, а представляет собой интервал, внутри которого с некоторой вероятностью Рд находится истинное значение измеряемой величины. Выделение середины интервала не означает, что истинное значение ближе к нему, чем к остальным точкам интервала. Оно может быть в любом месте интервала, а с вероятностью 1 - Рд даже вне его.

 







Дата добавления: 2014-11-10; просмотров: 2185. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия