Теоретическое введение. Законы роста оксидной пленки в значительной степени определяются ее структурой и защитными свойствами
Законы роста оксидной пленки в значительной степени определяются ее структурой и защитными свойствами. По защитной способности оксидные пленки можно разделить на два основных класса: первый класс – если объемное отношение Vок/VМе, т.е. отношение молярного объема оксида на один г-ат. металла к атомному объему металла меньше единицы, то оксид не сможет полностью покрыть поверхность металла и не будет обладать защитными свойствами; второй класс – если объемное отношение Vок/VМе больше единицы, то оксид обладает защитной способностью. Для первого случая имеет место линейный закон роста оксидной пленки: Δ m (или δ) = К 1τ, (1) где К 1 – константа скорости окисления, г/(м2·ч); τ – время окисления, ч; Δ m – удельное увеличение массы образца, г/м2; δ – толщина пленки, м.
Скорость линейного окисления постоянна во времени и не зависит от количества уже прореагировавшего газа или металла. Наиболее заторможенной стадией процесса является реакция на поверхности или фазовой границе (кинетический контроль). У сплошных пленок, обладающих защитными свойствами (V ок /V Ме > 1), скорость роста пленки лимитируется скоростью термодиффузии реагентов (диффузионный контроль). Процесс сопровождается самоторможением: по мере роста пленки скорость диффузии реагентов (металла и кислорода) через нее уменьшается, что приводит к замедлению скорости коррозионного процесса. В этом случае пленка растет по параболическому закону: Δ m 2 (или δ 2) = К 2τ, (2) где К 2 – параболическая константа скорости окисления, г2/(м4·ч) (м2/ч). В случае, если скорость роста пленки лимитируется и скоростью диффузии реагентов, и скоростью химической реакции (смешанный диффузионно-кинетический контроль), рост пленки может быть описан квадратичным уравнением Эванса: К 1Δ m 2 + К 2Δ m = К 1 К 2τ, (3) где К 1 и К 2 – постоянные коэффициенты, или степенным законом: Δ m n (или δ n) = Кn τ, (4) где Кn – стеленная константа скорости окисления; n – показатель степенного закона, причем 1 < n < 2. Рост тонких пленок на металлах при низких температурах и на первых стадиях окисления металлов при высоких температурах сопровождается большим самоторможением во времени, чем при параболическом законе. Этому, случаю, соответствуют: логарифмический закон Δ m (или δ) = К 3lgτ, (5) или обратный логарифмический закон 1/Δ m (или 1/δ) = К 4lgτ, (6) При низких температурах диффузия исков через пленку затруднена, в то время как электроны могут проходить через тонкий слой оксида либо благодаря термоионной эмиссии, либо вследствие туннельного эффекта, обусловливающего высокую проводимость оксидной пленки. При этом на поверхности раздела Ме-МеО образуются катионы, а на поверхности раздела оксид-газ – анионы кислорода. Внутри оксидной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т.е. заторможенным процессом. В реальных процессах окисления металлов часто наблюдаются нарушения приведенных выше соотношений из-за нарушения сплошности пленки, внутренними напряжениями, возникающими при росте пленки или изменении температуры, а также вследствие других причин.
|