Теоретическое введение. Температура оказывает существенное влияние на интенсивность процесса коррозии металлов в газах
Температура оказывает существенное влияние на интенсивность процесса коррозии металлов в газах. С повышением температуры скорость газовой коррозии всегда (за исключением некоторых частных случаев) значительно увеличивается, несмотря на уменьшение ее термодинамической возможности. Для наиболее распространенного процесса газовой коррозии – реакции окисления металла кислородом (25) термодинамическая возможность может быть определена по изменению энергии Гиббса Δ GT (уравнение изотермы Вант-Гоффа): (26) где - стандартное изменение энергии Гиббса (Δ GT при Р O2 = 1, 013·105 Па = 1 атм); R = 8, 314 Дж/(моль·К) – универсальная газовая постоянная; Т – температура, К; Кр – константа равновесия; (Р О2 )р и Р О2 – парциальное давление кислорода, отвечающее равновесному (упругость диссоциации оксида) и исходному состоянию системы соответственно (для воздуха Р О2 = 0, 213·105 Па = 0, 21 атм). Любой самопроизвольный процесс сопровождается убылью величины Δ GT (Δ GT < 0). Как следует из уравнения 26, окисление возможно при соблюдении условия: Р О2 > (Р О2 )р. Температурная зависимость скорости окисления металлов обычно выражается экспоненциальным уравнением Аррениуса: K = K 0exp(- Q / RT) (27) или D = D 0exp(- QD / RT), (27’) где K – константа скорости химической реакции (при кинетическом контроле процесса окисления); D – коэффициент диффузии иона кислорода (или иона металла) или эффективный коэффициент диффузии (при диффузионном контроле); Q и QD – энергия активации химической реакция и диффузии соответственно; K 0 и D 0 имеют смысл константы скорости и коэффициента диффузии при Т → ∞; R = 8, 314 Дж/(моль·К) – универсальная газовая постоянная. Следует однако отметить, что соотношение между скоростью газовой коррозии и температурой может быть нарушено или осложнено при возникновении колебаний температуры, применении попеременного нагрева и охлаждения, вызывающих разрушение оксидных пленок из-за возникновения значительных внутренних напряжений. Кроме того, зависимости (27) и (27’) могут осложняться в том случае, когда металлы образуют два или более оксидов, отвечающих различным температурным интервалам, а также при наличии структурных изменений, происходящих в металле при нагреве (магнитных и аллотропических превращений и др.). При этом температурная зависимость может быть представлена выражением типа: K = K 01exp(- Q 1/ RT) + K 02exp(- Q 2/ RT) + … (28) После логарифмирования уравнение (27) (или 27’) преобразуется к виду ln K = ln K 0 – Q / RT. (29) Построение гранка в координатах ln K = f(1/ T) дает прямую или в ряде случаев ломаную линию, каждый излом которой соответствует отмеченным ранее изменениям, имеющим место в металле или прилегающей к нему оксидной пленке. Тангенс угла наклона этой прямой (с положительным направлением оси 1/ T), определяемый соотношением tgα = - Q / R, (30) дает возможность определить энергию активации процесса, а экстраполяция на бесконечно большую температуру (Т → ∞) – значение K 0 из соотношения ln K = ln K 0 (при 1/ T = 0 в уравнении 29). (31) Влияние температуры на скорость окисления металлов может быть определено по изменению каких-либо физических параметров образцов, например, таких как масса, электросопротивление и других, зависящих от количества оксидной фазы на (в) образце, изменения его геометрических размеров (в результате окисления), при испытании в печи при нескольких температурах в течение определенного времени. Однако применение гравиметрического метода и метода измерения электросопротивления имеет ограничения: первый не пригоден в случае образования на образце частично возгоняющихся оксидов (например MoO3 и WO3), второй не применим для сплавов, имеющих различные скорости окисления компонентов, а также для систем, в которых при нагреве могут протекать процессы структурной релаксации.
|