Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства ЛРР





1. Свойство детерминированности.

Символы выходной последовательности ЛРР начиная с n -ого такта полностью определяются своими предыдущими значениями. Это вытекает из рекуррентного соотношения

2. Период рекуррентной последовательности.

Это время, по истечении которого повторится исходное состояние ЛРР. Период ЛРР зависит от полинома, на основе которого он строится. Максимальным периодом обладают ЛРР, построенные на примитивных полиномах. Определим максимальный период ЛРР. Если число разрядов ЛРР n, то максимально возможное число состояний разрядов ЛРР равно

mn =2 n

Учитывая, что одно состояние ЛРР является запрещенным, получаем

Т=2 n -1

3. Cвойство группового сложения.

Почленная сумма по модулю два любых двух выходных последова­тельностей одного ЛРР, получаемых при разных начальных заполнениях, является выходной последовательностью этого же ЛРР с другим начальным заполнением. Это начальное заполнение равно сумме исходных начальных заполнений.

 

 

Например, для ЛРР изображенного на рис.2 имеем

001 1 0 0 1 0 1 1

110 0 1 1 1 0 0 1

111 1 1 1 0 0 1 0

Рис. 2

 

4.Свойство сдвига.

Циклический сдвиг выходной последовательности ЛРР есть его же выходная последовательность при другом начальном заполнении.

1110010111001 0101110011110

5.Свойство баланса.

Любая последовательность максимального периода содержит

2 n -1 единиц и 2 n -2 нулей.

6.Свойство окна.

Если по выходной последовательности максимальной длины переме­щать " окно" шириной n элементов, то на периоде ЛРР каждая из возможных комбинаций длины n будет зафиксирована только один раз.

7.Свойство серий.

Определим серию, как последовательность одинаковых элементов. Любая выходная последовательность максимальной длины имеет:

-половину всех серий длины в 1 знак

-четверть всех серий длины в 2 знака

-одну восьмую всех серий длины в 3 знака

и так далее, пока доли дают целое число.

длина 1----------4

длина 2----------2

длина 3----------1

длина 4----------1

всего серий -----8

Если известна степень примитивного полинома n, но неизвестны его коэффициенты, то они могут быть однозначно определены по любым 2 n смежным элементам его выходной последовательности. Поиск коэф­фициентов hi, i =1, …, n -1 характеристического полинома сводится к решению системы n однородных линейных уравнений с n неизвестными. Это потребует порядка n 3 операций типа сложения, умножения. Существуют алгоритмы проверки любой двоичной последовательности на рекуррентность. Эти алгоритмы позволяют найти коэффициенты полинома h (x) при неизвестной длине ЛРР.

В настоящее время известны несколько десятков свойств ЛРР. Выше перечисленные являются важнейшими из них для использования в криптографических приложениях.

Рассмотренные выше свойства ЛРР легли в основу широкого приме­нения их для построения цифровых узлов техники связи.







Дата добавления: 2014-11-10; просмотров: 2734. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия