В ПРЕДЕЛАХ УПРУГИХ ДЕФОРМАЦИЙ
Цель работы: 1.Определить модуль сдвига (модуль упругости второго рода) для стали. 2.Установить зависимость угла закручивания от крутящего момента.
Кручение возникает в том случае, когда на элемент конструкции действуют пары сил, расположенные в плоскостях, перпендикулярных его оси. Наиболее простой и разработанной является теория кручения брусьев круглого поперечного сечения. Взаимный угол поворота двух сечений, расположенных на расстоянии друг от друга (рис.27, а) определяется по закону Гука
, (41)
где T - крутящий момент, G - модуль сдвига, - полярный момент инерции сечения бруса. Формула (41) устанавливает линейную зависимость между углом поворота и крутящим моментом T. Величина называется жесткостью при кручении. Модуль сдвига G характеризует способность материала сопротивляться деформации сдвига и является характеристикой упругих свойств материала так же, как модуль продольной упругости Е и коэффициент Пуассона . Между величинами G, Е и существует следующая зависимость: , (42)
Рис.27 При кручении в поперечных сечениях бруса возникают касательные напряжения, которые определяются по формуле
(43) где - расстояние от оси бруса до точки сечения, в которой определяется напряжение (рис.27, б). Во всех точках окружности радиуса касательные напряжения одинаковы. Из формулы (43) следует, что касательные напряжения равны нулю в центре тяжести поперечного сечения (при = 0) и достигают максимальной величины на контуре сечения (рис.27, б), причем от нуля до максимума изменяются по линейному закону. ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ Испытания производятся на специальной установке, схема которой приведена на рис.28. Стальной образец 1 круглого поперечного сечения жестко закреплен одним концом в неподвижном захвате 2. На свободном конце образца установлен рычаг 3 с подвеской 4 для грузов. Опора 5 в виде цилиндрического шарнира служит для исключения изгиба. На образце 1 установлен изогнутый поводок 6 и прямой поводок 7 на расстоянии друг от друга. На прямом поводке 7 установлен индикатор часового типа 8, который касается подвижным штифтом изогнутого поводка в точке С.
Рис.28
После установки груза на подвеску 4 изогнутый поводок 6 повернется на угол относительно сечения, в котором укреплен прямой поводок (рис.28). При этом точка касания С индикатора 8 переместится в положение на величину . Так как упругие деформации малы, то CO (рис.28, б), а отрезок С можно считать дугой окружности радиуса . Поэтому взаимный угол поворота определяется по формуле . (44)
Проведение испытания 1.Измерить и записать в журнал лабораторных работ: рабочую длину образца , см; диаметр образца d, см; расстояние от оси образца до точки С касания индикатора, мм; длину рычага 3, см. 2.Установить на подвеску 4 груз F=10 Н (предварительная нагрузка) и записать показания индикатора в делениях. 3.Последовательно добавлять на подвеску 4 грузы F = 10 Н и записывать соответствующие показания индикатора в делениях. 4.После четырех нагружений дальнейшее испытание прекратить и снять все грузы с подвески. Результаты испытаний Таблица 11
По окончании испытаний следует сделать вывод о максимальном расхождении опытного и теоретического значений модуля сдвига. Все расчеты и выводы по работе занести в журнал лабораторных работ. Обработка результатов испытания 1. Вычислить разности отсчетов по индикатору на ступень нагружения и умножить их на цену деления индикатора. 2. Вычислить углы закручивания на ступень нагружения по формуле (44). 3. Вычислить средний угол закручивания 4. Вычислить опытное значение модуля сдвига по формуле
, (45)
где - приращение крутящего момента. 5. Вычислить теоретическое значение модуля сдвига по формуле (42). 6. Вычислить расхождение в процентах между опытным и теоретическим значением модуля сдвига. 7. Построить зависимость между крутящим моментом T и углом закручивания . Для этого по вертикальной оси отложить в масштабе приращения крутящего момента , а по горизонтальной оси соответствующие приращения углов закручивания . Полученные точки должны расположиться вблизи наклонной прямой линии.
Контрольные вопросы
1. В каких точках поперечного сечения вала касательные напряжения максимальны? 2. При каких условиях нагружения возникает кручение? 3. Как записывается закон Гука при кручении? 4. Укажите формулу для вычисления касательных напряжений в произвольной точке поперечного сечения при кручении. 5. Какая зависимость существует между модулями упругости первого и второго рода? 6. По какой формуле определяется полярный момент инерции круглого сечения? 7. Что называется жесткостью сечения бруса при кручении? 8. По какой формуле определяется полярный момент сопротивления круглого сечения?
|