Построить график окружности, заданной в виде функций верхней и нижней половинок
Алгоритм выполнения задания 1 Задать n – количество точек рассчитываемых узлов окружности. Ввести дискретную переменную . Задать вектор изменения угла - изменяется в пределах от -p до +p, т.е. 2p. Задать векторы изменения координат Задать промежуточные векторы , из которых составить матрицу С.
Алгоритм выполнения задания 2 Задать n – количество точек рассчитываемых узлов фигуры+1, присвоить значение a длины ребра, xn, yn – координаты левой нижней вершины. Ввести дискретную переменную . Задать векторы изменения координат x и y для всех вершин квадрата. Построить график Алгоритм выполнения задания 3 Задать численно n – количество точек рассчитываемых узлов фигуры+1, радиус окружности R, координаты ее центра xc, yc. В блоке решения записать вектор изменения координат vX, при условии, что vX находится в пределах от (xc – R) до (xc + R). Вывести функции f1(x) для верхней половинки и f2(x) для нижней половинки окружности из уравнения . Вопросы на повторение Какая фигура отобразится на графике первого задания, если задать n: =3? n: =6? Что изменится, если задать: n: =4 и ? n: =4 и ? n: =5 и ?
|