Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение некоторых задач алгебры матриц





Вспомним основные определения алгебры матриц.

Если m*n выражений расставлено в прямоугольной таблице из m строк и n столбцов, то говорят о матрице размера m*n.

Выражения aij называют элементами матрицы.

Элементы aii, стоящие в таблице на линии, проходящей из левого верхнего угла в правый нижний угол квадранта n*n, образуют главную диагональ матрицы.

Матрицу размером m*n (m¹ n), называют прямоугольной, а в случае m=n – квадратной матрицей порядка n. В частности, матрица 1*n – вектор-строка, а матрица размера n*1 – вектор-столбец.

Квадратная матрица A={aij} размером n*n называется:

- нулевой, если все ее элементы равны нулю A={aij=0};

- верхней треугольной, если все ее элементы, расположенные ниже главной диагонали, равны нулю: A={aij=0 для всех i> j};

- нижней треугольной, если все ее элементы, расположенные выше главной диагонали, равны нулю: A={aij=0 для всех i< j};

- диагональной, если все элементы, кроме элементов главной диагонали, равны нулю: A={aij=0 для всех i¹ j};

- единичной, если элементы главной диагонали равны 1, а остальные – нулю A={aij=0 для всех i¹ j и aij=1 для всех i=j}.

С квадратной матрицей связано понятие определителя, или детерминанта. Определителем матрицы А является число detA, или D, вычисляемое по правилу: detA = где сумма распределена на всевозможные перестановки (i1, i2, …in) элементов 1, 2, …n и содержит n! слагаемых, причем l=0, если перестановка четная и l=1 – если нечетная. Квадратная матрица является невырожденной, когда ее определитель отличен от 0. В противном случае она будет вырожденной, или сингулярной. В МКАДе определитель рассчитывается нажатием соответствующей кнопки панели инструментов матрицы и указанием имени матрицы: ½ А½ =

Приведем определения некоторых специальных матриц. Квадратная матрица называется:

Симметрической, если Ат=А;

Кососимметрической, если Ат=-А;

Ортогональной, если ½ А½ =detA¹ 0 и Ат=А-1;

Идемпотентной, если А2=А; А2=А*А;

Инволютивной, если А2=Е, где Е – единичная матрица.

Возведение в степень возможно только для квадратных матриц.

 

Пример. В результате эксперимента для ряда кругов разной зернистости (dz=0, 1 0, 16 0, 25 0, 4 0, 63) получили ряд данных о шероховатости. Построить график зависимости.

 

1 способ – созданием матрицы из 5 строк и 2 столбцов. Имя матрицы М, вызываем команду создать матрицу и заполняем шаблон значениями:

1столбец -0, 1 0, 16 0, 25 0, 4 0, 63. 2 столбец - 0, 048 0, 043 0, 035 0, 025 0, 018.

М< 0> - 1столбец матрицы; М< 1> - 2 столбец матрицы (команда на панели матрицы)

Строим график М< 1> =f(М< 0> ).

2 способ – созданием дискретной переменной и двух векторов.

i: =0..4 dz[i: = 0.1, 0.16, 0.25, 0.4, 0.63

Ra[i: = 0.048, 0.043, 0.035, 0.025, 0.018

Значения элементов вектора вводятся через запятую и выстраиваются в столбец.

Строим график Ra(dz) от dz.

3 способ – созданием двух векторов.

X: =, далее вызываем шаблон, заполняем одну строку и 5 столбцов. Чтобы получить вектор, выделяем все, что в скобках и транспонируем: (0, 1 0, 16 0, 25 0, 4 0, 63)Т

Y: = (0, 048 0, 043 0, 035 0, 025 0, 018)Т

Строим график Y(X) от X.

 

Матричное уравнение – это уравнение типа А*Х=В или Х*А=В, где Х – неизвестная матрица. Если умножить матричное уравнение на матрицу, обратную А, то оно примет вид: А-1*А*Х=А-1*В или Х*А*А-1=В*А-1. Поскольку Е*Х = Х*Е = Х, то неизвестную матрицу Х можно найти так: Х = А-1*В или Х=В*А-1. Понятно, что матричное уравнение имеет единственное решение, если А и В – квадратные матрицы n-го порядка и определитель матрицы не равен 0.







Дата добавления: 2014-11-10; просмотров: 513. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия