Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение некоторых задач алгебры матриц





Вспомним основные определения алгебры матриц.

Если m*n выражений расставлено в прямоугольной таблице из m строк и n столбцов, то говорят о матрице размера m*n.

Выражения aij называют элементами матрицы.

Элементы aii, стоящие в таблице на линии, проходящей из левого верхнего угла в правый нижний угол квадранта n*n, образуют главную диагональ матрицы.

Матрицу размером m*n (m¹ n), называют прямоугольной, а в случае m=n – квадратной матрицей порядка n. В частности, матрица 1*n – вектор-строка, а матрица размера n*1 – вектор-столбец.

Квадратная матрица A={aij} размером n*n называется:

- нулевой, если все ее элементы равны нулю A={aij=0};

- верхней треугольной, если все ее элементы, расположенные ниже главной диагонали, равны нулю: A={aij=0 для всех i> j};

- нижней треугольной, если все ее элементы, расположенные выше главной диагонали, равны нулю: A={aij=0 для всех i< j};

- диагональной, если все элементы, кроме элементов главной диагонали, равны нулю: A={aij=0 для всех i¹ j};

- единичной, если элементы главной диагонали равны 1, а остальные – нулю A={aij=0 для всех i¹ j и aij=1 для всех i=j}.

С квадратной матрицей связано понятие определителя, или детерминанта. Определителем матрицы А является число detA, или D, вычисляемое по правилу: detA = где сумма распределена на всевозможные перестановки (i1, i2, …in) элементов 1, 2, …n и содержит n! слагаемых, причем l=0, если перестановка четная и l=1 – если нечетная. Квадратная матрица является невырожденной, когда ее определитель отличен от 0. В противном случае она будет вырожденной, или сингулярной. В МКАДе определитель рассчитывается нажатием соответствующей кнопки панели инструментов матрицы и указанием имени матрицы: ½ А½ =

Приведем определения некоторых специальных матриц. Квадратная матрица называется:

Симметрической, если Ат=А;

Кососимметрической, если Ат=-А;

Ортогональной, если ½ А½ =detA¹ 0 и Ат=А-1;

Идемпотентной, если А2=А; А2=А*А;

Инволютивной, если А2=Е, где Е – единичная матрица.

Возведение в степень возможно только для квадратных матриц.

 

Пример. В результате эксперимента для ряда кругов разной зернистости (dz=0, 1 0, 16 0, 25 0, 4 0, 63) получили ряд данных о шероховатости. Построить график зависимости.

 

1 способ – созданием матрицы из 5 строк и 2 столбцов. Имя матрицы М, вызываем команду создать матрицу и заполняем шаблон значениями:

1столбец -0, 1 0, 16 0, 25 0, 4 0, 63. 2 столбец - 0, 048 0, 043 0, 035 0, 025 0, 018.

М< 0> - 1столбец матрицы; М< 1> - 2 столбец матрицы (команда на панели матрицы)

Строим график М< 1> =f(М< 0> ).

2 способ – созданием дискретной переменной и двух векторов.

i: =0..4 dz[i: = 0.1, 0.16, 0.25, 0.4, 0.63

Ra[i: = 0.048, 0.043, 0.035, 0.025, 0.018

Значения элементов вектора вводятся через запятую и выстраиваются в столбец.

Строим график Ra(dz) от dz.

3 способ – созданием двух векторов.

X: =, далее вызываем шаблон, заполняем одну строку и 5 столбцов. Чтобы получить вектор, выделяем все, что в скобках и транспонируем: (0, 1 0, 16 0, 25 0, 4 0, 63)Т

Y: = (0, 048 0, 043 0, 035 0, 025 0, 018)Т

Строим график Y(X) от X.

 

Матричное уравнение – это уравнение типа А*Х=В или Х*А=В, где Х – неизвестная матрица. Если умножить матричное уравнение на матрицу, обратную А, то оно примет вид: А-1*А*Х=А-1*В или Х*А*А-1=В*А-1. Поскольку Е*Х = Х*Е = Х, то неизвестную матрицу Х можно найти так: Х = А-1*В или Х=В*А-1. Понятно, что матричное уравнение имеет единственное решение, если А и В – квадратные матрицы n-го порядка и определитель матрицы не равен 0.







Дата добавления: 2014-11-10; просмотров: 513. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия