Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение проблемы автокорреляции





Если во временном ряду обнаружена автокорреляция данных, ее необходимо устранить или каким-либо образом учесть, прежде чем полученное уравнение регрессии можно будет использовать для прогноза. В этом случае начинать следует с оценки самого уравнения регрессии, чтобы получить ответы на следующие вопросы: правильна ли выбранная форма уравнения, не пропущена ли важная независимая переменная, имеются ли повторяющиеся явления, которые накладывают свой отпечаток на значения данных?

Есть несколько методов устранения автокорреляции. Один из них заключается в добавлении в уравнение регрессии дополнительной переменной, которая влияет на значение зависимой переменной в разные периоды времени.

Для того чтобы устранить серийную корреляцию сильно автокоррелирующих данных, можно также использовать в расчетах не сами значения ряда, а их разности. Иначе говоря, вместо определения уравнения регрессии относительно исходных переменных Y, Х1, Х2, …, Хk, это уравнение отыскивается для разностей Y’t = Yt - Yt-1 и Х’t1 = Хt1 - Хt-1, 1, Х’t2 = Хt2 - Хt-2, 2. Разности следует использовать, когда значение статистики DW, вычисленное для исходных переменных, близко к 0.

Использование регрессионных моделей, построенных для обобщенных разностей в виде Y’t = Yt - ρ Yt-1 и Х’t = Хt - ρ Хt-1, также позволяет устранить серийную корреляцию. Однако если серийная корреляция очень велика, целесообразно использовать обычные разности.

Для устранения влияния автокорреляции также может использоваться модель авторегрессии. Модель авторегрессии первого порядка записывается в виде уравнения Yt 0 1 Yt-1 + + ε t, где предполагается, что ошибки ε t удовлетворяют обычным предположениям регрессионной модели. Вычисляя параметры этой модели методом наименьших квадратов, получаем уравнение для прогнозирования: = b 0 + b 1 Y t-1. В модели авторегрессии прогнозируемые значения вычисляются как функция предыдущих значений временного ряда.

При другом методе устранения этого влияния используется логарифмирование и нахождение разностей. Исходные значения переменных логарифмируются, и используются разности прологарифмированных значений. В данном случае для прогнозирования используется следующее уравнение:

Ln = Ln + 1, 01 (LnXt – LnХ t-1).

 

Порядок выполнения работы

1.Получить у преподавателя данные для расчета.

2.Ввести исходные данные в таблицу Excel.

3.Провести на ЭВМ серию расчетов по определению параметров статистики Дарбина-Уотсона.

4.Провести анализ полученных резултьтатов.

5.Зафиксировать результаты расчетов в тетради.

6.Сделать выводы по результатам моделирования и записать в тетради.

 

Отчет по работе должен содержать

1.Название и цель работы.

2.Основные теоретические и методические положения.

3.Исходные данные для расчета.

4.Результаты расчета.

5.Выводы по результатам моделирования.

 







Дата добавления: 2014-11-10; просмотров: 1091. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2024 год . (0.022 сек.) русская версия | украинская версия