Ознаки мультиколінеарності
1. Якщо серед парних коефіцієнтів кореляції незалежних змінних є такі, рівень яких наближається або дорівнює множинному коефіцієнту кореляції, то це свідчить про можливість існування мультиколінеарності. Інформацію про парну залежність може дати симетрична матриця коефіцієнтів парної кореляції, або кореляції нульового порядку:
Але якщо в моделі фігурує більше двох незалежних змінних, вивчення питання про мультиколінеарність не може обмежуватись інформацією, що дає ця матриця. Явище мультиколінеарності ні в якому разі не зводиться тільки до існування парної кореляції між незалежними змінними. Більш загальна перевірка передбачає визначення визначника (детермінанта) матриці r, який називається детермінантом кореляції і позначається 2. Якщо 3. Якщо в економетричній моделі одержано мале значення параметра 4. Якщо коефіцієнт детермінації 5. Якщо при побудові економетричної моделі на основі покрокової регресії включення нової незалежної змінної суттєво змінює оцінку параметрів моделі при незначному підвищенні (або зниженні) коефіцієнтів кореляції чи детермінації, то ця змінна, очевидно, знаходиться в лінійній залежності від інших, які введені в модель раніше. Всі ці методи виявлення мультиколінеарності мають один загальний недолік: жоден із них не проводить чіткої межі між тим, що треба вважати «суттєвою» мультиколінеарністю, яку треба враховувати, і тим, коли мультиколінеарністю можна знехтувати.
|