Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полиномиальный





Явный вид задания полинома:

у = ао + aix + 32Х +.. + anxn

Параметрический вид задания полинома:

х = аОх + ajxt + a2xt2 +...... + anxtn

у= аоу + ai y t + a2 y t2 +,... + anytn

Переход от представления контура в виде параметрической кубической кривой к кусочно-линейному представлению

Используется для упрощения вычисления размеров контура, например, для вычисления длины контура, площади внутри контура и т.д.

При конструировании пространственных форм (этим занимается геометрическое моделирование) возникают задачи трёхмерного представления поверхностей в пространстве. Рассмотрим одно из наиболее широко распространённых представлений, а, именно, параметрические кубические полиномы. Итак, почему кубический полином (то есть кривая описывается многочленом третьей степени)? Потому что кубический многочлен является параметрической функцией наиболее низкой степени, с помощью которой можно представить кривую, описывающую реальную пространственную кривую. Имеется много способов представления параметрических бикубических кривых. Рассмотрим один из них: кривые Безье.

Преимущество параметрических кубических кривых - нет разрывов.

Кривые Безье

Безье (1970) перегруппировал члены параметрического кубического многочлена Фергюссона и получил кривую следующего вида:

r= r(t) = (l-t)3po + 3t(l-t)2Pl+3t2(l-t)p2 + t3p3,

0< t< l

Ценность этой кривой в том, что для своего построения она требуют задания всего 4 точек. Две из четырех прямых, соединяющих эти четыре точки, будут являться касательными для кривой Безье и их взаимное расположение определяет форму кривой Безье.

Свойства кривой Безье

Кривая Безье является гладкой кривой.

2. Начинается в 1-ой вершине ро массива из четырёх точек р0, pi, рг, рз, касается отрезка
popi и заканчивается в последней точке р3, касаясь отрезка ргРз-

3. Лежит в выпуклой оболочке, порожденной массивом точек р0, pi, p2, Рз-

4. Симметрична, то есть сохраняет свою форму при перемене порядка вершин массива на
противоположный: р0, рь р2, Рз Рз, Рг, Рн Ро •

5. Если точки ро, pi, P2, Рз лежат на одной прямой, то кривая Безье совпадает с отрезком
РоРз-

6. Если точки ро, pi, P2, Рз лежат в одной плоскости, то кривая Безье тоже лежит в этой
плоскости.

7. Изменение положения хотя бы одной из четырёх опорных точек приводит к заметному
изменению всей кривой Безье.

8. В уравнении, описывающем кривую Безье, нет свободных параметров - заданный набор
из четырёх точек однозначно определяет кривую Безье, не давая возможности повлиять
на её форму.








Дата добавления: 2014-11-10; просмотров: 692. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия