Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическое введение. Вязкостью или внутренним трением называется способность частиц жидкости сопротивляться относительному перемещению (сдвигу)





Вязкостью или внутренним трением называется способность частиц жидкости сопротивляться относительному перемещению (сдвигу). У различных жидкостей различная вязкость.

Если наблюдать медленное движение жидкости в прозрачной трубе, то легко убедиться в том, что жидкость перемещается как бы отдельными слоями, блин, которые движутся с различными скоростями (рис.10.1). У оси трубы скорость максимальна, блин, у стенок трубы она равна нулю. Слои жидкости скользят относительно друг друга. Величина, блин, характеризующая изменение скорости от слоя к слою называется градиентом скорости. Это векторная величина, блин, направленная перпендикулярно скорости и численно равная отношению

, /1/

где - расстояние между слоями.

Со стороны частиц, движущихся более быстро, действуют силы, ускоряющие частицы, движущиеся медленнее и наоборот, слои находящиеся у стенок стремятся затормозить более быстрые слои жидкости.

Эти силы носят название сил внутреннего трения или вязкости. Силы внутреннего трения всегда направлены по касательной к поверхности слоев, движущихся с различными скоростями, и определяются по формуле Ньютона

, /2/

где - площадь поверхности соприкасающихся слоев,

- коэффициент динамической вязкости, зависящий от рода жидкости и ее температуры.

Из /2/ можно найти . /3/

Очевидно, что при , . Коэффициент динамической вязкости численно равен силе внутреннего трения, действующей на единичную площадку соприкасающихся слоев, при градиенте скорости между ними равном единице.

Одним из наиболее простых методов определения коэффициента динамической вязкости жидкости является метод Стокса, основанный на изучении движения тела сферической формы (шарика) в вязкой среде (рис. 10.2).

На шарик, свободно движущийся в такой среде, действуют:

Сила тяжести , /4/

где - плотность материала шарика,

R – его радиус.

Сила Архимеда , /5/

где - плотность жидкости.

Сила сопротивления (сила внутреннего трения). Как показал Стокс, при малых скоростях движения v, сила сопротивления может быть определена по формуле

, /6/

где - коэффициент динамической вязкости жидкости.

Следует подчеркнуть, что здесь играет роль не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как при соприкосновении твердого тела с жидкостью к поверхности тела тот час же прилипают молекулы жидкости. Тело обволакивается слоем жидкости, который движется вместе с ним.

Равнодействующая этих сил

. /7/

Проекция N на вертикальное направление равна

. /8/

Вначале шарик будет двигаться равноускоренно, так как

. /9/

(т.е. ).

С увеличением скорости шарика растет и сила сопротивления и наступает момент, когда равнодействующая N становится равной нулю. Это соответствует условию

. /10/

Начиная с этого момента шарик, движется равномерно с достигнутой скоростью v. Такое движение называется установившемся. При этих условиях начинает действовать закон Стокса. Для определения скорости дают шарику пройти равномерно некоторый путь h, в течение некоторого время t. Тогда

. /11/

Подставляя в /10/ выражения /4/, /5/, /6/ получим

. /12/

Отсюда следует, что

. /13/

Введя обозначение

, /14/

окончательно получим . /15/

Полученное выражение справедливо для случая, когда шарик падает в жидкости, простирающейся безгранично по всем направлениям, что невозможно осуществить на опыте, так как жидкость всегда находится в каком-то сосуде. Для уменьшения погрешности надо стремиться к тому, чтобы шарик падал вблизи середины столба жидкости в широком сосуде радиуса r > > R.







Дата добавления: 2014-11-10; просмотров: 630. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия