Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисления для полного набора частотных интервалов





Полным набором называется совокупность частотных интервалов

(2.6)

которые полностью покрывают всю частотную ось.

Если при вычислениях долей энергии отрезка речевого сигнала вида (2.1) во всех частотных интервалах, например в случае вычислений спектрограмм, основываться непосредственно на квадратичных формах вида (2.4), то объем реализуемых вычислений будет пропорционален величине , то есть слишком большим.

При многократной реализации вычислений с одним и тем же набором частотных интервалов и длительностей обрабатываемых отрезком данных целесообразно использовать следующий подход.

Для всех введём обозначения

,

причём справедливы аналоги представления (2.4)

, (2.7)

где ;

, (2.8)

где

Пусть далее – матрица собственных векторов матрицы

, (2.9)

такая, что выполнятся соотношение

где

,

причём предполагается упорядочение собственных чисел по убыванию

.

Положим

.

Тогда представление (2.7) нетрудно преобразовать к виду

. (2.10)

Вычисления показывают, что выбор количества слагаемых в (2.10) на основе соотношения

, (2.11)

при выполнении условия

позволяет на основе соотношения (2.10) оценивать доли энергии отрезков сигналов с погрешностями, не превышающими нескольких сотых долей процента.

При равноразнесенных интервалах анализа выражение (2.11) имеет вид

Тогда вычисление всей совокупности долей энергии отрезка сигнала потребует порядка вычислительных операций типа «умножение», что может быть существенно меньше чем правая часть (2.4).

Для вычислений можно составить блочную матрицу вида

, (2.12)

где , .

Далее следует вычислить вектор

. (2.13)

Тогда с заданной точностью выполняется равенство

. (2.14)

Таким образом, основой вычислений полного набора долей энергии отрезка сигнала могут служить соотношения (2.13) и (2.14).







Дата добавления: 2014-11-10; просмотров: 873. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия