Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценивание значимости уравнения регрессии





Для числового определения качества (значимости) оценок уравнения регрессии обычно используют критерии, вычисляемые через остаточную, регрессионную и полную суммы квадратов. Остаточная сумма Qe (см. формулу (3)) характеризует отклонение наблюдений зависимой переменной от линии регрессии. Чем меньше Qe, темлучше соотношение (1) описывает реально существующую зависимость Y (X).

Регрессионная сумма QR вычисляется по формуле:

. (9)

Величина QR показывает, насколько оценки отличаются от среднего зна­чения отклика . Иначе говоря, QR характеризует отличие оценок зависи­мой переменной, полученных с помощью линейной регрессии, от самой про­стой оценки – выборочного среднего значения. Чем больше QR, тем целесооб­разнее использовать достаточно сложную регрессионную модель вместо .

Полная сумма квадратов Q определяется соотношением:

. (10)

Величина полной суммы зависит только от наблюдений отклика и не зависит от оценок параметров уравнения линейной регрессии . Можно доказать (см., например, [5]), что в условиях классической нормальной регрессионной модели выполняется соотношение:

Q= QR + Qe. (11)

Из равенства (11) следует, что если, например, изменение оценок приведет к уменьшению Qe, то QR обязательно увеличится, так как их сумма должна остаться неизменной. Поэтому МНК-оценка регрессионного уравнения обеспечивает не только минимум Qe, но и максимум QR, и значение критерия качества МНК-оценки можно использовать для характеристики значимости уравнения регрессии (при заданных наблюдениях).

Критерии качества уравнения регрессии обычно определяются через отношения рассмотренных выше сумм квадратов (тогда величина критерия не зависит от единиц измерения отклика). Например, используется коэффициент детерминации R 2:

. (12)

Из (11) следует, что 0≤ R 2 ≤ 1. Чем ближе R 2 к 1, тем значимее уравнение регрессии. Если R 2=1, то уравнение регрессии идеально соответствует наблюдениям (все точки наблюдений лежат на линии регрессии). Если R 2=0, то , и применение регрессионной модели бессмысленно. Для парной регрессии

R 2= r 2, (12а)

где r – выборочный коэффициент корреляции X и Y.

Для оценивания значимости оценок уравнения парной регрессии также используется статистика F Фишера:

(13)

Учитывая, что большое значение QR и малое значение Qe указывают на высокое качество уравнения регрессии, можно сделать вывод: чем больше F, тем значимее уравнение.

Известно (см., например, [5]), что в условиях классической нормальной линейной регрессионной модели статистика (13) имеет распределение Фишера (F -распределение) со степенями свободы k 1=1 и k 2= n -2. Используя ее, можно проверить ги­потезу о незначимости уравнения регрессии. Обозначим через f (a; 1; n- 2) квантиль F -распределения уровня 1-a(в эконометрике обычно a=0, 05). Если уравнение незначимо, то большие значения F маловероятны. Поэтому гипотезу о незначимости уравнения регрессии следует отклонять, если

F> f (a; 1; n- 2). (14)

Вероятность ошибки первого рода (отклонить гипотезу при условии, что она верна) при использовании правила (14) равна a.

Упрощенно критерий Фишера можно сформулировать следующим образом: если неравенство (14) справедливо, то уравнение регрессии считается значимым, иначе – незначимым.







Дата добавления: 2014-11-10; просмотров: 1853. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия