Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классическая нормальная линейная регрессионная модель





Рассмотрим вопрос о качестве МНК-оценок (4) и (5). Эти оценки обла­дают многими хорошими свойствами, если величины в уравнении (1) удовлетворяют следующим условиям.

  • X – детерминированная величина;
  • e1, …, e n – независимые нормальные одинаково распределенные случайные величины: e i ~ N(0, s2 ), M(e i e j)=0 при i ¹ j.

При выполнении этих условий соотношение (1) называется классической нор­мальной линейной регрессионной моделью.

Справедлива теорема Гаусса-Маркова: В условиях классической нормальной линейной регрессионной модели* оценки (4) и (5) имеют наименьшую дисперсию в классе всех линейных несмещенных оценок.

Оценки, имеющие наименьшую дисперсию, называются эффективными. Таким образом, по теореме Гаусса-Маркова в условиях классической нормальной регрессионной модели МНК-оценки параметров парной линейной регрессии являются эффективными в классе всех линейных несмещенных оценок.

Упрощенная интерпретация теоремы Гаусса-Маркова: в среднем оценки (4) и (5) меньше, чем любые другие линейные несмещенные оценки, полученные по данным наблюдениям, отклоняются от истинных (но неизвестных) значений параметров m и b.

Кроме того, можно доказать (см., например, [5]), что в условиях классической нормальной регрессионной модели оценки (4) и (5) обладают следующими свойствами#:

1. – состоятельные оценки параметров m и b.

2. – несмещенные оценки параметров m и b ().

3. Для дисперсии оценки справедлива формула:

(8)

4. являются нормальными случайными величинами.

5. Остаточная сумма квадратов Qe независима от , а статистика

(8а)

имеет распределение хи-квадрат с числом степеней свободы n -2 (c2 n -2).

6. Cтатистика s 2:

(8б)

является несмещенной оценкой дисперсии возмущений (Ms 2=s2).







Дата добавления: 2014-11-10; просмотров: 3318. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия