Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение парной линейной регрессии





Пусть функционирование экономического объекта описывается двумя числовыми переменными: входной переменной X и выходной переменной Y. Возможно, что X может изменяться (регулироваться) исследователем, а значе­ние Y получается как результат функционирования объекта.

Предполагается, что Y зависит от X практически линейно:

Y = mX + b +e, (1)

где m и b – детерминированные величины, e – случайная величина.

Выходная переменная Y называется зависимой переменной (или объяс­няемой переменной, или откликом). Входная переменная X называется незави­симой переменной (или объясняющей пере­менной, или фактором, или регрес­сором). Случайную величину e в экономет­рике называют возмущением.

Если математическое ожидание возмущения равно нулю, то функция

f (x)= mx + b

является условным математическим ожиданием Y при заданном значении X=x: f (x)≡ MxY. В этом случае соотношение (1) называется регрессионным уравне­нием. Чтобы подчеркнуть, что переменных всего две, а связь между ними ли­нейная, говорят, что (1) – уравнение парной линейной регрессии. Функция f (x) называется регрессией (линейной) Y по X (или функцией регрессии), а величины m и b – параметрами линейной регрессии (m – коэффициентом, b – сдвигом).

Пусть имеется n наблюдений величин X и Y: (x1, y1), (x2, y2), …, (xn, yn). Из соотношения (1) получаем: yi = mxi + bi, где ε i – возмущение в i -ом наблюдении, i =1, …, n.

Требуется по наблюдениям найти в некотором смысле наилучшие оцен­ки и значений m и b. Если и получены, то оценку отклика по извест­ному значению фактора x можно определить по формуле:

. (2)

Формулу (2) можно использовать для прогноза значения отклика по инте­ресующему исследователя значению фактора.







Дата добавления: 2014-11-10; просмотров: 1092. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия