Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Другие меры информации





Пример 25. Случайная величина имеет нормальное распределение с известным среднеквадратическим отклонением . Вычислить I (1: 2), I (2: 1), J (1, 2) для следующих гипотез о математическом ожидании этой величины:

H1: m = m 1,

H2: m = m 2.

Решение. Запишем плотности вероятности случайной величины , соответствующие каждой из гипотез:

,

.

По формуле (4.43) [1] находим информацию для различения в пользу Н1 против Н2, содержащуюся в выборочном значении (в этой задаче удобнее использовать натуральные единицы информации):

По формуле (4.44) [1] находим среднюю информацию для различения в пользу Н1 против Н2

Далее учтем, что при гипотезе Н1 математическое ожидание , и получим окончательно

.

По формулам (4.45) и (4.46) [1] находим

.

Таким образом, средняя информация для различения гипотез Н1, и Н2 в данной задаче пропорциональна квадрату расстояния между математическими ожиданиями сигнала и обратно пропорциональна его дисперсии.

Пример 26. Случайная величина Y имеет экспоненциальное распределение

.

а) Найти максимально правдоподобную оценку математического ожидания m этой случайной величины.

б) Найти статистические характеристики (математическое ожидание и дисперсию) этой оценки.

д) Найти информацию Фишера и по неравенству Рао-Кра­мера проверить сделанное заключение об эффективности оценки.

Решение. Запишем уравнение правдоподобия

Отсюда , т.е. максимально правдоподобная оценка математического ожидания равна наблюдаемому выборочному значению .

Далее находим математическое ожидание оценки

.

Таким образом, оценка является несмещенной.

Дисперсию оценки вычисляем по

.

Информацию Фишера находим по формуле (4.48) [1]

Видим, что неравенство Рао-Крамера (4.49) [1] обращается в равенство, следовательно, оценка эффективна. Лучшей оценки, т.е. обладающей меньшей дисперсией при отсутствии систематической ошибки, не существует.








Дата добавления: 2014-11-10; просмотров: 891. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия