Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Другие меры информации





Пример 25. Случайная величина имеет нормальное распределение с известным среднеквадратическим отклонением . Вычислить I (1: 2), I (2: 1), J (1, 2) для следующих гипотез о математическом ожидании этой величины:

H1: m = m 1,

H2: m = m 2.

Решение. Запишем плотности вероятности случайной величины , соответствующие каждой из гипотез:

,

.

По формуле (4.43) [1] находим информацию для различения в пользу Н1 против Н2, содержащуюся в выборочном значении (в этой задаче удобнее использовать натуральные единицы информации):

По формуле (4.44) [1] находим среднюю информацию для различения в пользу Н1 против Н2

Далее учтем, что при гипотезе Н1 математическое ожидание , и получим окончательно

.

По формулам (4.45) и (4.46) [1] находим

.

Таким образом, средняя информация для различения гипотез Н1, и Н2 в данной задаче пропорциональна квадрату расстояния между математическими ожиданиями сигнала и обратно пропорциональна его дисперсии.

Пример 26. Случайная величина Y имеет экспоненциальное распределение

.

а) Найти максимально правдоподобную оценку математического ожидания m этой случайной величины.

б) Найти статистические характеристики (математическое ожидание и дисперсию) этой оценки.

д) Найти информацию Фишера и по неравенству Рао-Кра­мера проверить сделанное заключение об эффективности оценки.

Решение. Запишем уравнение правдоподобия

Отсюда , т.е. максимально правдоподобная оценка математического ожидания равна наблюдаемому выборочному значению .

Далее находим математическое ожидание оценки

.

Таким образом, оценка является несмещенной.

Дисперсию оценки вычисляем по

.

Информацию Фишера находим по формуле (4.48) [1]

Видим, что неравенство Рао-Крамера (4.49) [1] обращается в равенство, следовательно, оценка эффективна. Лучшей оценки, т.е. обладающей меньшей дисперсией при отсутствии систематической ошибки, не существует.








Дата добавления: 2014-11-10; просмотров: 891. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия