Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементарные задачи на принадлежность





1. Построить линию, принадлежащую многогранной поверхности.

На рисунке 39 построены прямолинейные отрезки [1-2] и [S-3], принадлежащие поверхности пирамиды.

2. Построить вторую проекцию линии, принадлежащую многогранной поверхности.

На рисунке 40 – отрезок [1-2], принадлежащий поверхности призмы.

 

Рисунок 39 – Линия на поверхности пирамиды

Рисунок 40 – Линия на поверхности призмы

 

 

Рисунок 41 – Условие задачи на построение линии

 

На рисунке 41 дано исходное условие задачи – фронтальная проекция l2 линии l, принадлежащей поверхности призмы

 

Рисунок 42 – Решение задачи на построение прямой

На рисунке 42 задача решена.

 

3 Построить точку, принадлежащую многогранной поверхности.

Рисунок 43 – Точка на поверхности пирамиды

 

На рисунке 43 построена точка М, принадлежащая поверхности пирамиды, т.к. она принадлежит линии S1(S111; S212), принадлежащей данной поверхности.

 

Задача построить вторую проекцию точки, принадлежащей многогранной поверхности, если одна, ее проекция задана.

На рисунке 44 даны исходные условия, т.е. заданы проекции точек А2 и B1. Достроить их недостающие проекции.

 

Рисунок 44 – Условие задачи на нахождение точек пирамиды

Рисунок 45 – Построение недостающих проекций точек пирамиды

На рисунке 45 построение вторых проекций точек A и B, принадлежащих поверхности пирамиды.

 







Дата добавления: 2014-11-10; просмотров: 1075. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия