Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементарные задачи на принадлежность





1. Построить линию, принадлежащую многогранной поверхности.

На рисунке 39 построены прямолинейные отрезки [1-2] и [S-3], принадлежащие поверхности пирамиды.

2. Построить вторую проекцию линии, принадлежащую многогранной поверхности.

На рисунке 40 – отрезок [1-2], принадлежащий поверхности призмы.

 

Рисунок 39 – Линия на поверхности пирамиды

Рисунок 40 – Линия на поверхности призмы

 

 

Рисунок 41 – Условие задачи на построение линии

 

На рисунке 41 дано исходное условие задачи – фронтальная проекция l2 линии l, принадлежащей поверхности призмы

 

Рисунок 42 – Решение задачи на построение прямой

На рисунке 42 задача решена.

 

3 Построить точку, принадлежащую многогранной поверхности.

Рисунок 43 – Точка на поверхности пирамиды

 

На рисунке 43 построена точка М, принадлежащая поверхности пирамиды, т.к. она принадлежит линии S1(S111; S212), принадлежащей данной поверхности.

 

Задача построить вторую проекцию точки, принадлежащей многогранной поверхности, если одна, ее проекция задана.

На рисунке 44 даны исходные условия, т.е. заданы проекции точек А2 и B1. Достроить их недостающие проекции.

 

Рисунок 44 – Условие задачи на нахождение точек пирамиды

Рисунок 45 – Построение недостающих проекций точек пирамиды

На рисунке 45 построение вторых проекций точек A и B, принадлежащих поверхности пирамиды.

 







Дата добавления: 2014-11-10; просмотров: 1075. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия