Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Третье уравнение





Н: эндогенных переменных – 2 (y 2, y 3), отсутствующих экзогенных – 1 (x 2).

Выполняется необходимое равенство: 2=1+1, следовательно, уравнение точно идентифицируемо.

Д: в третьем уравнении отсутствуют y 1 и x 2. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение Отсутствующие переменные
y 1 x 2
Первое –1  
Второе b 21 a 22

Det A = -l× a 22 - b 21 × 0 ¹ 0.

Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и третье уравнение точно идентифицируемо.

Следовательно, исследуемая система точно идентифицируема и может быть решена косвенным методом наименьших квадратов.

2. Вычислим структурные коэффициенты модели:

1) из третьего уравнения приведенной формы выразим х 2 (так как его нет в первом уравнении структурной формы):

.

Данное выражение содержит переменные y 3, x 1 и x 3, которые нужны для первого уравнения структурной формы модели (СФМ). Подставим полученное выражение x 2 в первое уравнение приведенной формы модели (ПФМ):

Þ

первое уравнение СФМ:

2) во втором уравнении СФМ нет переменных x 1 и x 3. Структурные параметры второго уравнения СФМ можно будет определить в два этапа:

Первый этап: выразим x 1 в данном случае из первого или третьего уравнения ПФМ. Например, из первого уравнения:

.

Подстановка данного выражения во второе уравнение ПФМ не решило бы задачу до конца, так как в выражении присутствует x 3, которого нет в СФМ.

Выразим x 3 из третьего уравнения ПФМ:

.

Подставим его в выражение x 1:

;

.

Второй этап: аналогично, чтобы выразить x 3 через искомые y 1, y 3, и x 2, заменим в выражении x 3 значение x 1 на полученное из первого уравнения ПФМ:

Следовательно,

.

Подставим полученные x 1 и x 3 во второе уравнение ПФМ:

второе уравнение СФМ.

3) из второго уравнения ПФМ выразим x 2, так как его нет в третьем уравнении СФМ:

.

Подставим полученное выражение в третье уравнение ПФМ:

– третье уравнение СФМ.

Таким образом, СФМ примет вид







Дата добавления: 2014-11-10; просмотров: 680. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия