Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Третье уравнение





Н: эндогенных переменных – 2 (y 2, y 3), отсутствующих экзогенных – 1 (x 2).

Выполняется необходимое равенство: 2=1+1, следовательно, уравнение точно идентифицируемо.

Д: в третьем уравнении отсутствуют y 1 и x 2. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение Отсутствующие переменные
y 1 x 2
Первое –1  
Второе b 21 a 22

Det A = -l× a 22 - b 21 × 0 ¹ 0.

Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и третье уравнение точно идентифицируемо.

Следовательно, исследуемая система точно идентифицируема и может быть решена косвенным методом наименьших квадратов.

2. Вычислим структурные коэффициенты модели:

1) из третьего уравнения приведенной формы выразим х 2 (так как его нет в первом уравнении структурной формы):

.

Данное выражение содержит переменные y 3, x 1 и x 3, которые нужны для первого уравнения структурной формы модели (СФМ). Подставим полученное выражение x 2 в первое уравнение приведенной формы модели (ПФМ):

Þ

первое уравнение СФМ:

2) во втором уравнении СФМ нет переменных x 1 и x 3. Структурные параметры второго уравнения СФМ можно будет определить в два этапа:

Первый этап: выразим x 1 в данном случае из первого или третьего уравнения ПФМ. Например, из первого уравнения:

.

Подстановка данного выражения во второе уравнение ПФМ не решило бы задачу до конца, так как в выражении присутствует x 3, которого нет в СФМ.

Выразим x 3 из третьего уравнения ПФМ:

.

Подставим его в выражение x 1:

;

.

Второй этап: аналогично, чтобы выразить x 3 через искомые y 1, y 3, и x 2, заменим в выражении x 3 значение x 1 на полученное из первого уравнения ПФМ:

Следовательно,

.

Подставим полученные x 1 и x 3 во второе уравнение ПФМ:

второе уравнение СФМ.

3) из второго уравнения ПФМ выразим x 2, так как его нет в третьем уравнении СФМ:

.

Подставим полученное выражение в третье уравнение ПФМ:

– третье уравнение СФМ.

Таким образом, СФМ примет вид







Дата добавления: 2014-11-10; просмотров: 680. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия