Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Третье уравнение





Н: эндогенных переменных – 2 (y 2, y 3), отсутствующих экзогенных – 1 (x 2).

Выполняется необходимое равенство: 2=1+1, следовательно, уравнение точно идентифицируемо.

Д: в третьем уравнении отсутствуют y 1 и x 2. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение Отсутствующие переменные
y 1 x 2
Первое –1  
Второе b 21 a 22

Det A = -l× a 22 - b 21 × 0 ¹ 0.

Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и третье уравнение точно идентифицируемо.

Следовательно, исследуемая система точно идентифицируема и может быть решена косвенным методом наименьших квадратов.

2. Вычислим структурные коэффициенты модели:

1) из третьего уравнения приведенной формы выразим х 2 (так как его нет в первом уравнении структурной формы):

.

Данное выражение содержит переменные y 3, x 1 и x 3, которые нужны для первого уравнения структурной формы модели (СФМ). Подставим полученное выражение x 2 в первое уравнение приведенной формы модели (ПФМ):

Þ

первое уравнение СФМ:

2) во втором уравнении СФМ нет переменных x 1 и x 3. Структурные параметры второго уравнения СФМ можно будет определить в два этапа:

Первый этап: выразим x 1 в данном случае из первого или третьего уравнения ПФМ. Например, из первого уравнения:

.

Подстановка данного выражения во второе уравнение ПФМ не решило бы задачу до конца, так как в выражении присутствует x 3, которого нет в СФМ.

Выразим x 3 из третьего уравнения ПФМ:

.

Подставим его в выражение x 1:

;

.

Второй этап: аналогично, чтобы выразить x 3 через искомые y 1, y 3, и x 2, заменим в выражении x 3 значение x 1 на полученное из первого уравнения ПФМ:

Следовательно,

.

Подставим полученные x 1 и x 3 во второе уравнение ПФМ:

второе уравнение СФМ.

3) из второго уравнения ПФМ выразим x 2, так как его нет в третьем уравнении СФМ:

.

Подставим полученное выражение в третье уравнение ПФМ:

– третье уравнение СФМ.

Таким образом, СФМ примет вид







Дата добавления: 2014-11-10; просмотров: 680. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия