Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 1. МОДЕЛЬ С АДДИТИВНОЙ КОМПОНЕНТОЙ





Приведены данные о количестве продукции, проданной компанией в течение последних 13 кварталов.

Дата Объем продаж, тыс. шт. Дата Объем продаж, тыс. шт.
       
Январь-март 2003   Октябрь-декабрь  
Апрель-июнь   Январь-март 2005  
Июль-сентябрь   Апрель-июнь  
Октябрь-декабрь   Июль-сентябрь  
Январь-март 2004   Октябрь-декабрь  
Апрель-июнь   Январь-март 2006  
Июль-сентябрь      

Требуется:

1. Построить аддитивную модель временного ряда.

2. Сделать прогноз на 2 квартала вперед.

Решение.

1. Проанализируем данные и попробуем обнаружить тенденцию. Если устойчивая тенденция действительно существует, то построенную модель можно будет использовать для прогнозирования объема продаж в следующих кварталах.

Для этого построим график временного ряда (см. рис.).

Из графика следует, что возможен возрастающий тренд, содержащий сезонные колебания. Так объемы продаж в зимний период (1 и 4) значительно выше, чем в летний (2 и 3). Сезонная компонента практически не изменилась за последние три года. Тренд показывает, что в среднем объем продаж возрос с 240 тыс. шт. в 2003 г. до 480 тыс. шт. в 2006 г., однако увеличение сезонных колебаний не наблюдалось. Этот факт свидетельствует в пользу модели с аддитивной компонентой

. (1)

2. Расчет сезонной компоненты.

Для исключения влияния сезонной компоненты используют метод скользящей средней, суть которого заключается в нахождении среднего арифметического значения параметра за m моментов времени

.

Для рассмотренных данных об объемах продаж проведем следующие расчеты.

1. Производя скольжение по значениям квартальных продаж из колонки 2, вычислим сумму продаж за каждые четыре квартала и внесем ее в колонку 3 табл. 1.

2. Вычислим скользящую среднюю за каждые 4 квартала (колонка 4).

3. Поскольку усредненные данные, внесенные в колонку 3, относятся не к конкретному кварталу, а к моменту времени между двумя кварталами (например, между апрелем-июнем и июлем-сентябрем 2003 г.), то необходимо получить центрированную скользящую среднюю для каждой пары значений из колонки 4. Полученные значения относятся к конкретным кварталам, начиная с июля-сентября 2003 года, их вносят в колонку 5. Таким образом, величины из колонки 5 являются десезонализированными средними значениями за квартал.

4. Сезонную компоненту, содержащую остаток, рассчитывают по формуле и вносят в колонку 6.

5. Используя данные за все годы, вычисляют среднее значение для каждого квартала, что позволит уменьшить значения ошибок (табл. 2).

6. Средние оценки сезонной компоненты корректируются, путем увеличения или уменьшения некоторых из них на одно и то же число, таким образом, чтобы их общая сумма была равна 0. Корректирующий фактор рассчитывают следующим образом: сумма оценок сезонных компонент делится на 4.

Аналогичная процедура применима при определении сезонной вариации за любой промежуток времени. Например, если в качестве сезонов рассматриваются не кварталы, а дни недели, то устранения влияния сезонной компоненты рассчитывают скользящую среднюю, но уже не по четырем, а по семи точкам. Эта скользящая средняя представляет собой значение тренда в середине недели, т.е. в четверг. Поэтому в этом случае необходимость в центрировании отпадает.

3. Десезонализация данных при расчете тренда.

Десезонализация исходных данных заключается в вычитании скорректированных сезонных компонент (последняя строка табл. 2) из фактических значений данных за каждый квартал, т.е. (табл. 3).

Нанесем значения новых оценок тренда из колонки 4 на график исходных данных, что еще раз подтвердит существование явного линейного тренда.

Определим уравнение линии тренда методом наименьших квадратов

. (2)

Таблица 1

Дата Объем продаж, тыс. шт. Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
           
Январь-март 2003        
Апрель-июнь        
      229, 75    
Июль-сентябрь       240, 375 –58, 375
           
Октябрь-декабрь       260, 625 +36, 375
      270, 25    
Январь-март 2004       279, 625 +44, 375
           
Апрель-июнь       299, 875 –21, 875
      310, 75    
Июль-сентябрь       320, 375 –63, 375
           
Октябрь-декабрь       340, 25 +43, 75
      350, 5    
Январь-март 2005       360, 25 +40, 75
           
Апрель-июнь       379, 75 –19, 75
      389, 5    
Июль-сентябрь       399, 5 –64, 5
      409, 5    
Октябрь-декабрь        
           
Январь-март 2006        

Таблица 2

  Год Номер квартала
             
    – +44, 375 +40, 75 – –21, 875 –19, 75 –58, 375 –63, 375 –64, 5 +36, 375 +43, 75 –  
Итого   +85, 125 –41, 625 –186, 25 +80, 125  
Средняя оценка сезонной компоненты   +42, 563 –20, 813 –62, 083 +40, 063 Сумма –0, 27
Скорректированная сезонная компонента   +42, 631 –20, 746 –62, 016 +40, 131 Сумма 0, 0

Таблица 3

Номер квартала Объем продаж Y, тыс. шт. Сезонная компонента S Десезонализированный объем продаж, тыс. шт.
       
    +42, 631 196, 369
    ‑ 20, 746 221, 746
    ‑ 62, 016 244, 016
    +40, 131 256, 869
       
    +42, 631 281, 369
    ‑ 20, 746 298, 746
    ‑ 62, 016 319, 016
    +40, 131 343, 869
       
    +42, 631 358, 369
    ‑ 20, 746 380, 746
    ‑ 62, 016 397, 016
    +40, 131 421, 869
       
    +42, 631 438, 369

4. Расчет ошибок

Из (1) следует, что величина ошибки равна

.

Значение T найдем из уравнения (2), а S из табл. 2. Результаты расчета представлены в табл. 4.

Таблица 4

Номер квартала Объем продаж Y, тыс. шт. Сезонная компонента S Тренд, T тыс. шт. Ошибка S, тыс. шт.
         
    +42, 631 200, 028 ‑ 3, 659 (1, 5%)
    ‑ 20, 746 220, 003 +1, 743 (0, 9%)
    ‑ 62, 016 239, 978 4, 038 (2, 2%)
    +40, 131 259, 953 ‑ 3, 084 (1, 0%)
    +42, 631 279, 928 +1, 441 (0, 4%)
    ‑ 20, 746 299, 903 ‑ 1, 157 (0, 4%)
    ‑ 62, 016 319, 878 ‑ 0, 862 (0, 3%)
    +40, 131 339, 853 +4, 016 (1, 0%)
    +42, 631 359, 828 ‑ 1, 459 (0, 4%)
    ‑ 20, 746 379, 803 +0, 943 (0, 3%)
    ‑ 62, 016 399, 778 ‑ 2, 762 (0, 8%)
    +40, 131 419, 753 +2, 116 (0, 5%)
    +42, 631 439, 728 ‑ 1, 359 (0, 3%)

Столбец 5 можно использовать при расчете среднего абсолютного отклонения MAD (mean absolute deviation) и средней квадратической ошибки MSE (mean square error):

и .

где и – это фактическое и прогнозное значение в момент времени t.

В нашем случае ошибки достаточно малы и составляют от 0, 2% до 2, 2%. Тенденция, выявленная по фактическим данным, достаточно устойчива и позволяет получить хорошие краткосрочные прогнозы.

5. Прогнозирование по аддитивной модели.

Прогнозные значения рассчитываются по формуле

(тыс. шт. за квартал),

где x – номер квартала, на который дается прогноз, T – значение тренда, рассчитанное по (2), S (x) – сезонная компонента, составляющая в январе-марте 42, 6, в апреле-июне – 20, 7, в июле-сентябре – 62, 0, в октябре-декабре – 40, 1. Например, прогноз на апрель-июнь 2006 г. (x = 14) имеет вид

,

тыс. шт.

Можно предположить, что ошибка прогноза будет приблизительно 0, 3-2, 2% в соответствии с рассчитанными ошибками модели, но чем более отдаленным является период упреждения, тем меньшей оказывается обоснованность прогноза.







Дата добавления: 2014-11-10; просмотров: 1999. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.017 сек.) русская версия | украинская версия