Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Деление отрезка





1. Деление горизонтального отрезка пополам (рис.3.7). Для того, чтобы разделить горизонтальный отрезок AB в перспективе пополам, необходимо достроить прямоугольник ABCE, у которого сторона CE лежит на линии горизонта, а стороны AE и BC вертикальные. Вертикальная прямая, проведенная через точку пересечения диагоналей O, разделит отрезок AB на две равные части. Прямая, проведенная через точки E и M до пересечения с продолжением отрезка AB в точке L, позволит построить отрезок BL, равный заданному отрезку AB.

2. Деление отрезка на пропорциональные части (рис.3.8). Отрезок A/B/ разделен на пропорциональные части в перспективе в том же отношении, что и отрезок AB, если существуют три пары точек A и A/, 2 и 2 /, B и B/, через которые можно провести прямые, пересекающиеся в одной точке O.

На основании этого утверждения можно разделить горизонтальный отрезок A/B/ на пропорциональные части (рис.3.9). Для этого через ближайший конец отрезка A/ проводится горизонтальный отрезок, разделенный в заданном отношении, последняя его точка (5) соединяется с конечной точкой B/ прямой, которая доводится до линии горизонта. Прямые, проведенные из точки схода O в точки деления отрезка, являются горизонтальными и параллельными (в перспективе) и разделят отрезок A/B/ в том же отношении, что и отрезок 1-5. Т.е. для горизонтального отрезка AB достаточно двух пар точек (A/ и 1, B/ и 5), т.к. заведомо предполагалось расположить точку O на линии горизонта.

В случае, если прямая занимает общее положение, необходимо разделить в пропорциональном отношении ее вторичную проекцию, а вертикальные прямые, проведенные из точек деления, разделят сам отрезок в том же отношении (рис.3.10).

 







Дата добавления: 2014-11-12; просмотров: 2898. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия