Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Измерение отрезков





Зачастую на перспективе возникает необходимость определить натуральную величину отрезка или отложить отрезок определенной величины. Эти задачи можно решить непосредственно на перспективе, если найдется возможность каким-либо образом в картинной плоскости построить отрезок, равный заданному отрезку (т.к. отрезки, расположенные в картинной плоскости не искажаются и проецируются в натуральную величину). На рис.3.1-3.3 рассматривается определение натуральной величины отрезков частного положения. Для доказательства построений на этих чертежах кроме перспективы отрезков в проекционной связи приведена их горизонтальная проекция.

1. Определение натуральной величины отрезков, параллельных картинной плоскости (рис.3.1). Прямая AB может быть вынесена в картинную плоскость с помощью прямых, перпендикулярных картине, имеющих точку схода главную точку P. По горизонтальной проекции видно, что прямые a и b как бы выносят отрезок AB в картинную плоскость (с этой целью можно было использовать любые параллельные прямые, но тогда необходимо было бы построить их точку схода). Точка P в этом случае называется точкой измерения, т.е. с ее помощью можно измерить натуральную величину отрезка AB.

2. Определение натуральной величины отрезков, расположенных в предметной плоскости и перпендикулярных картинной плоскости (рис.3.2). На чертеже изображено два отрезка AB и CE. Если через концы отрезков B, C, E на горизонтальной плоскости проекций провести прямые под углом 450 к картине, то эти прямые отсекут на основании картины отрезки a и b, равные по величине заданным. Точками схода для таких прямых являются дистанционные точки. Поэтому если непосредственно на перспективе провести прямые через концы отрезков в дистанционные точки D1 и D2, то они на основании картины отсекут отрезки, равные по натуральной величине отрезкам AB и CE. В данном случае точками измерения являются дистанционные точки D1 и D2.

3. Определение натуральной величины произвольного отрезка, расположенного в предметной плоскости (рис.3.3). Определяется точка схода F/ заданного отрезка AB. Затем определяется точка S0h вращением точки S вокруг точки F0 на горизонтальной плоскости проекций до совмещения с картиной. Из точек A1 и B1 проводятся прямые, параллельные SS1h. Полученный треугольник SS1hF0 является по построению равнобедренным, а треугольник BcB1N0 ему подобным, а следовательно, также равнобедренным. Прямые A1Ac и B1Bc отсекают на основании картины отрезок AcBc, равный заданному. Точка Sh является точкой схода для отрезков A1Ac и B1Bc. На самой перспективе точка Sh определяется вращением совмещенной точки зрения Sc вокруг точки схода F/ до линии горизонта (т.е. на картине строится треугольник ScShF/, являющийся зеркальным отражением треугольника SS1hF0). Точка Sh является точкой измерения для любой прямой, расположенной в предметной плоскости и параллельной заданному отрезку AB.

 

 

4. Определение натуральной величины произвольного отрезка. (рис.3.4). Для определения натуральной величины произвольного отрезка необходимо знать его вторичную проекцию. Тогда построив натуральную величину его вторичной проекции и используя ту же точку измерения Sh можно построить натуральную величину отрезка AB.

 







Дата добавления: 2014-11-12; просмотров: 3607. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия