Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метрика ячеистого беспорядка





Идеальный ячеистый беспорядок встречается редко. Для того чтобы это понять достаточно рассмотреть обычный сплав замещения: здесь на фоне ячеистого беспорядка, связанного с присутствием атомов разных сортов в узлах решетки, всегда присутствует элемент топологического беспорядка, связанный с тем, что атомы разных сортов имеют разный размер, что в свою очередь вносит искажения в структуру самой решетки.

Рассмотрим неупорядоченный сплав AB. Пусть – число пар АВ в сплаве. Тогда вероятность

– есть вероятность, с которой можно встретить в сплаве смешанную пару AB.

Если корреляции не учитываются, то (так называемая модель случайной засыпки). Коэффициент 2 возникает из-за того, что рассматривается возможность расположения пары AB сначала на одной подрешетке, затем на другой.

Меру наличия корреляций можно определить следующей функцией:

. (2.5)

Функция показывает, насколько величина отличается от соответствующей величины в модели случайной засылки.

Величину ближнего порядка ранее определили как

.

Отметим, что отличается от s лишь перенормировкой.

Если попытаться рассматривать корреляции за пределами 1-й корреляционной сферы, то можно ввести корреляционную функцию как

. (2.6)

Следует ожидать, что она будет спадать до нуля при увеличении расстояния R.

Чтобы выражение типа (2.6) имело смысл, надо взять среднее по ансамблю, составленному из квазибесконечного числа копий рассматриваемой системы (эти средние мы будем обозначать угловыми скобками ). Далее надо воспользоваться какой-нибудь из эргодических теорем и приравнять результат усреднения по ансамблю среднему по времени или по пространству для данного макроскопического образца.

Например, рассматривая магнитную систему, мы могли бы ввести корреляционную функцию для направлений спинов в узлах и , разделенных расстоянием Ее удобно записать в виде

(2.7)

 







Дата добавления: 2014-11-12; просмотров: 608. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия