Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача координационных сфер





Обобщение состоит в том, что связь распространяется на узлы, расположенные не только в первой координационной сфере. Результаты были получены только путем расчетов на ЭВМ.

 

Рис.7.15. Путь протекания по охватывающим окружностям, построенным на квадратной решетке. Взаимодействие учитывается на расстоянии втрое большем, чем между ближайшими соседями. Путь протекания показан ломаной линией.

 

Таблица 7.6. Пороги протекания для плоских решеток

Тип решетки Z
Шестиугольная однократная (связаны узлы только первой координационной сферы)   0, 700 2, 10
Треугольная однократная (связаны узлы только первой координационной сферы)   0, 500 3, 00
Шестиугольная 1, 2, 3 (связаны узлы первой, второй и третьей координационных сфер)   0, 300 3, 28
Треугольная 1, 2, 3 (связаны узлы первой, второй и третьей координационных сфер)   0, 225 4, 05

 

Эти результаты могут быть обобщены на случай . А именно: - условие на порог протекания. Если R увеличится, следовательно нужна меньшая плотность окружностей, что бы реализовать протекание (n – средняя плотность в единицу площади поверхности).

 

Таблица 7.7. Пороги протекания для объемных решеток

Тип решетки
Типа алмаза   0, 4250 1, 70
ПК 1   0, 3070 1, 84
ОЦК 1   0, 2430 1, 94
ГЦК 1   0, 1975 2, 34
ПК 1, 2, 3 (*)   0, 0970 2, 52
ОЦК 1, 2, 3 (*)   0, 0950 2, 47
ГЦК 1, 2, 3 (*)   0, 0610 2, 56

Примечание: (*) - все 3 сферы используются для связи, следовательно число связей увеличивается.

В случае объемных решеток все также может быть обобщено для .

Рассмотрим задачу о вложенных сферах

, (7.6)

где R – радиус сфер, N – плотность центров в единице объема

Смысл соотношения в следующем: число центров, попадающих в зону влияния должны достичь определенного значения (конкретно 2, 7).

 

 

 


Рис. 7.16. Пути протекания по охватывающим окружностям (показаны ломаными линиями, точки – центры окружностей)

 

Сделаем следующие обобщения.

1) в случае произвольной формы вложенных объектов

, следовательно = 2, 7.

Условие образования бесконечного кластера выполняется с хорошей точностью. Можно, например, заменить сферу на овал. Оказывается, интеграл сохраняется для всех выпуклых фигур. Существенным является критическое заполнение объема, а чем – не важно. Как только концентрация достигнет критической величины для объектов данного размера, тогда появится протекание.

2) Можно ввести понятие касающихся сфер (или проводимость по белым сферам, а черные сферы того же радиуса – диэлектрики)

 

 

Рис. 7.17. Смесь проводящих и непроводящих частиц

 

Для касающихся сфер критическим условием является следующее: . Если эффективный объем проводящих шаров ~0, 16, возникает бесконечный кластер.

 

Пример физической задачи

Наличие примеси создает в запрещенной зоне полупроводника локализованные состояния. Как отмечалось, если атом помещается в среду с диэлектрической проницаемостью , то его боровский радиус:

, где e» 10 ¸ 15, m *» 0.1me

.

т.е. электрон примесного атома в среде имеет большой радиус орбиты и небольшую энергию связи.

При введении примесей, они распределяются хаотически.

Однако, эксперимент показывает, что при увеличении концентрации примесей происходит переход к металлической проводимости, т.е. имеет место переход диэлектрик – металл. Покажем, что в определенных условиях это т переход соответствует образованию связанных примесей и создание бесконечного кластера. По бесконечному кластеру примесей возможна проводимость.

Действительно, эксперимент показал, что переход происходит при выполнении условия = 0, 02, где – эффективный объем, занимаемый волновой функцией примеси.

Пусть - волновая функция S-типа, где - большое.

Концентрация примеси является заданной ((7.6), где N -задано).

Далее, пусть - необходимый эффективный радиус перекрытия волновых функций примесных атомов, достаточный для переходов электрона с атома на атом, тем самым, создающих бесконечный кластер. Пусть выполняется соотношение критического условия для трехмерного случай перекрывающихся сфер.

,

тогда, после подстановки = 10 ÷ 15, можно найти параметр перекрытия " хвостов" волновых функций .

На этих " хвостах" волновых функций происходит перекрытие и образование бесконечного кластера.

 







Дата добавления: 2014-11-12; просмотров: 1031. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия