Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполяционная формула Ньютона №2





 

Первая интерполяционная формула Ньютона практически неудобна для интерполирования вблизи конца таблицы. В этом случае обычно применяется вторая интерполяционная формула Ньютона.

Пусть имеем систему значений функции для равноотстоящих значений аргумента , где . Построим интерполирующий полином следующего вида:

 

,

где . Подставляя эти значения в формулу и полагая получим:

 

- второй многочлен Ньютона.

Остаточный член второй интерполирующей формулы Ньютона имеет вид:

,

где - некоторая внутренняя точка наименьшего промежутка, содержащего все узлы и точку .

Для неограниченной таблицы значений функции y число n в интерполяционной формуле может быть любым, поэтому практически его выбирают так, что бы разность была постоянной с заданной степенью точности. В этом случае остаточный член удобней вычислять по формуле:

.

Если таблица значений функции конечна, то число n не может быть больше числа значений функции минус единица.

 

Пример 5.2. Найти приближенное значение функции при данном значении аргумента с помощью первого или второго интерполяционного многочлена Ньютона. Вычислить остаточный член.

Дана таблица значений функции yi с постоянным шагом 0, 005

 

   
x y
   
1.215 0.106044
1.220 0.106491
1.225 0.106935
1.230 0.107377
1.235 0.107818
1.240 0.108257
1.245 0.108696
1.250 0.109134
1.255 0.109571
1.260 0.110008
   

 

Требуется определить значения функции y(x) при следующих значениях аргумента

x 1= 1.2173; x 2 = 1.253; x 3= 1.210; x 4= 1.270.

 

Составим таблицу конечных разностей.

 

 

i xi yi Dyi D2yi D3yi
           
  1.215 0.106044 0.000447 -0.000003 0, 000001
  1.220 0.106491 0.000444 -0.000002 0, 000001
  1.225 0.106935 0.000442 -0.000001 -0, 000001
  1.230 0.107377 0.000441 -0.000002 0, 000002
  1.235 0.107818 0.000439   -0, 000001
  1.240 0.108257 0.000439 -0.000001  
  1.245 0.108696 0.000438 -0.000001 0, 000001
  1.250 0.109134 0.000437    
  1.255 0.109571 0.000437 -  
  1.260 0.110008 - -  
           

 

При вычислении разностей ограничиваемся разностями второго порядка, так как они практически постоянны. При х = 1.2173 и х = 1.210 пользуемся формулой Ньютона №1:

 

где q = (x-x0)/h.

Если x = 1.2173, то q = (1.2173-1.215)/0.005= 0.46;

 

P1 (1.2173)=0.106044+0.46·0.000447=0.106044+0.0002056=0.106250

 

Если x = 1.210, то q = (1.210-1.215)/0.005= -1;

 

P 1(1.210)= 0.106044+(-1)·0.000447=0.105597

P 2(1.210)= P 1(1.210)+ R 1=0.105600

 

При x = 1.253 и x = 1.270 пользуемся второй формулой Ньютона:

 

где q = (x-xn)/h.

Если x = 1.253, то q = (1.253 - 1.250)/0.005 = 0.6;

 

P1 (1.253)=0.109134+0.6·0.000438=0.109134+0.000263=0.1093968

Если x = 1.270, то q = (1.270 - 1.260)/0.005 = 2;

 

P1 (1.270)=0.110008+2·0.000437=0.110008+0.000874=0.110882

Ответ: f (1.2173)» 0.106250; f (1.253) ·» 0.109397; f (1.210)» 0.105597;

f (1.270)» 0.110882.

 







Дата добавления: 2014-11-12; просмотров: 957. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия