Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод релаксаций





 

Пусть дана система: (3.1)

Преобразуем эту систему следующим образом: перенесем свободные члены налево и разделим первое уравнение на , второе – на и т.д. Тогда получим систему, приготовленную к релаксации: , где и .

Пусть - начальное приближение решения системы. Подставляя эти значения в систему, получим в правых частях уравнений системы некоторые числовые значения. Будем называть их невязками. Невязки обращаются в нуль при подстановке корней в уравнения системы

.

Если одной из неизвестных дать приращение , то соответствующая невязка уменьшится на величину , а все остальные невязки увеличатся на величину . Таким образом, чтобы обратить очередную невязку в нуль, достаточно величине дать приращение и мы будем иметь и

Суть метода заключается в том, чтобы на каждом шаге обращать в нуль максимальную по модулю невязку, изменяя значения соответствующей компоненты приближения. Процесс заканчивается, когда все невязки преобразованной системы будут равны нулю с заданной степенью точности.

Пример3.1: Пусть дана линейная система. Решить с точностью 0.01.

.

Приведем систему к виду, удобному для релаксации:

.

Выбирая в качестве начальных приближений корней нулевые значения , находим , , .

Согласно общей теории полагаем: . Отсюда получаем невязки

Далее полагаем

Суммируя все приращения получим значения корней:

Удобно располагать вычисления в таблице:

x1 R1 x2 R2 x3 R3
  0.93 .60 0.16   0.86 0.70 0.16 0, 80     0.18 0.80 -0.80
0.76 0.17 0.86 -0.86 0.09
0.93 -0.93     0.13 0.09 0.09 0.09
    0.07 0.04 0.09 0.04 0.18 -0.18
0.04 0.03 0.13 -0.13     0.02 0.01
0.07 -0.07     0.01 0.01 0.01 0.01
    0.01 0.02 -0.02
  0.01 -0.01    
         
1.00   1.00   1.00  

 

Ответ:








Дата добавления: 2014-11-12; просмотров: 946. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия