Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод хорд





 

В этом методе нелинейная функция f(x) на отделенном промежутке

[ a, b ] заменяется хордой, проходящей через точки (a, f(a))и (b, f(b))

Рис.2.4. Метод хорд. Неподвижен правый конец промежутка b

Уравнение хорды: . Найдем точку пересечения хорды с горизонтальной осью. Полагая и , получим

.

Точку x1 принимаем за новую границу отрезка, где содержится корень. Через эту точку с координатами (x1, f(x1)) и соответствующую границу предыдущего интервала (b, f(b)) опять проводим хорду, находим и т.д., получая последовательность x1, x2, x3, …xn, …, сходящуюся к корню уравнения.

Вторая производная сохраняет постоянный знак на . Следовательно, возможны два случая. Если f(b)· f " (b)> 0, то хорда имеет правый фиксированный конец, причем последовательность x0, x1, …xn приближается к корню слева. За начальное приближение x0, естественно, берут a

; ; ;

.

 

 

Рис.2.5. Метод хорд. Неподвижен левый конец промежутка a

Если f(a)· f " (a)> 0, то хорда имеет левый фиксированный конец, причем последовательность x0, x1, …xn … приближается к корню справа. За начальное приближение x0, берут b

; ; ;

.

Для оценки точности можно воспользоваться формулой

,

где -точный корень, - приближенный корень, , на промежутке [ a, b ]. Считаем до тех пор пока, не выполнится условие . Если имеет место неравенство , то счет можно прекратить, когда.

Пример 2.4. Найти методом хорд корень уравнения x4-x-1=0

 

Решение находим, используя пакет Mathcad.

 

Функция монотонна на промежутках (-∞, 0.63), (0.63, ∞) и меняет на концах промежутков знак. Уравнение имеет два корня. Сузим промежутки отделения корней методом проб, т.е. подстановкой.

 

Первый корень принадлежит промежутку (-1, -0.5)

 

Второй корень принадлежит промежутку (1, 1.5)

 

Будем находить корень на промежутке (-1, -0.5)

 

 

Вторая производная всюду положительна, функция положительна в точке a = -1, значит, этот конец неподвижен.

 

-максимальное, a -минимальное значение модуля производной на промежутке

 

так как , множитель

нужно учитывать при оценке точности решения,

 

 

 

 

Нашли корень исходного уравнения с точностью .

 

Рис. 2.6. Вычисления в Mathcad, реализующие метод хорд для примера 2.4

 

2.2.3. Метод Ньютона – метод касательных

 

Пусть - корень уравнения отделен на отрезке , причем и непрерывны и сохраняют определенные знаки на этом же отрезке . Найдя какое-нибудь n-е значение корня (), уточним его по методу Ньютона. Для этого положим , где - считаем малой величиной. Разложим функцию f(x) в ряд Тейлора в окрестности точки x n по степеням h n. Тогда можно записать:

Ограничимся двумя членами ряда и так как , то:

.

Учитывая найденную поправку hn:, получим (n=0, 1, 2, …).

Рис.2.7 Метод касательных. Начальное приближение x0=b

По-другому этот метод называется методом касательных. Если в точке провести касательную к функции f(x), то ее пересечение с осью ОХ и будет новым приближением x1 корня уравнения

Хорошим начальным приближением является то значение, для которого выполнено неравенство . Погрешность вычислений Счет можно прекратить, когда

Теорема 2.2: Если , причем и отличны от нуля и сохраняют определенные знаки при , то, исходя из начального приближения , удовлетворяющего условию , можно вычислить методом Ньютона единственный корень уравнения с любой степенью точности.

 

Пример 2.5. Найти методом Ньютона корень уравнения x4-x-1 =0,

 

1-я производная
2-я производная положительна
один корень лежит на промежутке (-1.-0.5), второй на промежутке (1.1.5) Уточним левый корень методом Ньютона

 

 

 

 

 

Нашли корень исходного уравнения -0.7245 с точность 0.00007.

 

Рис. 2.8. Вычисления в Mathcad, реализующие метод касательных для примера 2.5

 







Дата добавления: 2014-11-12; просмотров: 6645. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия