Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод хорд





 

В этом методе нелинейная функция f(x) на отделенном промежутке

[ a, b ] заменяется хордой, проходящей через точки (a, f(a))и (b, f(b))

Рис.2.4. Метод хорд. Неподвижен правый конец промежутка b

Уравнение хорды: . Найдем точку пересечения хорды с горизонтальной осью. Полагая и , получим

.

Точку x1 принимаем за новую границу отрезка, где содержится корень. Через эту точку с координатами (x1, f(x1)) и соответствующую границу предыдущего интервала (b, f(b)) опять проводим хорду, находим и т.д., получая последовательность x1, x2, x3, …xn, …, сходящуюся к корню уравнения.

Вторая производная сохраняет постоянный знак на . Следовательно, возможны два случая. Если f(b)· f " (b)> 0, то хорда имеет правый фиксированный конец, причем последовательность x0, x1, …xn приближается к корню слева. За начальное приближение x0, естественно, берут a

; ; ;

.

 

 

Рис.2.5. Метод хорд. Неподвижен левый конец промежутка a

Если f(a)· f " (a)> 0, то хорда имеет левый фиксированный конец, причем последовательность x0, x1, …xn … приближается к корню справа. За начальное приближение x0, берут b

; ; ;

.

Для оценки точности можно воспользоваться формулой

,

где -точный корень, - приближенный корень, , на промежутке [ a, b ]. Считаем до тех пор пока, не выполнится условие . Если имеет место неравенство , то счет можно прекратить, когда.

Пример 2.4. Найти методом хорд корень уравнения x4-x-1=0

 

Решение находим, используя пакет Mathcad.

 

Функция монотонна на промежутках (-∞, 0.63), (0.63, ∞) и меняет на концах промежутков знак. Уравнение имеет два корня. Сузим промежутки отделения корней методом проб, т.е. подстановкой.

 

Первый корень принадлежит промежутку (-1, -0.5)

 

Второй корень принадлежит промежутку (1, 1.5)

 

Будем находить корень на промежутке (-1, -0.5)

 

 

Вторая производная всюду положительна, функция положительна в точке a = -1, значит, этот конец неподвижен.

 

-максимальное, a -минимальное значение модуля производной на промежутке

 

так как , множитель

нужно учитывать при оценке точности решения,

 

 

 

 

Нашли корень исходного уравнения с точностью .

 

Рис. 2.6. Вычисления в Mathcad, реализующие метод хорд для примера 2.4

 

2.2.3. Метод Ньютона – метод касательных

 

Пусть - корень уравнения отделен на отрезке , причем и непрерывны и сохраняют определенные знаки на этом же отрезке . Найдя какое-нибудь n-е значение корня (), уточним его по методу Ньютона. Для этого положим , где - считаем малой величиной. Разложим функцию f(x) в ряд Тейлора в окрестности точки x n по степеням h n. Тогда можно записать:

Ограничимся двумя членами ряда и так как , то:

.

Учитывая найденную поправку hn:, получим (n=0, 1, 2, …).

Рис.2.7 Метод касательных. Начальное приближение x0=b

По-другому этот метод называется методом касательных. Если в точке провести касательную к функции f(x), то ее пересечение с осью ОХ и будет новым приближением x1 корня уравнения

Хорошим начальным приближением является то значение, для которого выполнено неравенство . Погрешность вычислений Счет можно прекратить, когда

Теорема 2.2: Если , причем и отличны от нуля и сохраняют определенные знаки при , то, исходя из начального приближения , удовлетворяющего условию , можно вычислить методом Ньютона единственный корень уравнения с любой степенью точности.

 

Пример 2.5. Найти методом Ньютона корень уравнения x4-x-1 =0,

 

1-я производная
2-я производная положительна
один корень лежит на промежутке (-1.-0.5), второй на промежутке (1.1.5) Уточним левый корень методом Ньютона

 

 

 

 

 

Нашли корень исходного уравнения -0.7245 с точность 0.00007.

 

Рис. 2.8. Вычисления в Mathcad, реализующие метод касательных для примера 2.5

 







Дата добавления: 2014-11-12; просмотров: 6645. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия