Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отделение корней уравнения





 

Пусть дано уравнение, которое в общем виде записывается формулой

, (2.1)

где f(x) любая действительная функция.

Точным корнем уравнения (2.1) на конечном или бесконечном отрезке [ α, β ] назовем всякое число ξ из промежутка, которое обращает функцию.f(x) в нуль. Так как уравнение может быть достаточно сложным, редко удается найти его точные корни. Задача состоит в том, чтобы найти приближенные корни и оценить, насколько точно это сделано.

Процесс нахождения приближенных корней уравнения общего вида f(x) = 0 проводится в два этапа:

1. Отделение корней, то есть установление возможно малых промежутков , в которых содержится один и только один корень уравнения (2.1);

2. Уточнение приближенных корней.

Если ξ -точный корень, x приближенный корень уравнения (2.1), а ε точность, то для того, чтобы приближенный корень x был найден с заданной точностью ε достаточно потребовать выполнения неравенства: .

Теорема 2.1: Если непрерывная функция принимает значения противоположных знаков на концах , т.е. , то внутри этого отрезка содержится, по меньшей мере, один корень уравнения .

Корень [ ] заведомо будет единственным, если производная существует и сохраняет постоянный знак внутри интервала , т.е. (или ) при .

 







Дата добавления: 2014-11-12; просмотров: 890. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия