Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка погрешности приближений процесса итераций





 

Пусть и - два последовательных приближения системы (3.2). Тогда для приближения справедлива оценка

:,

если выполнено первое условие теоремы 3.1, или

,

если выполнено второе условие теоремы 3.1. Процесс итерации заканчивают, когда указанные оценки свидетельствуют о достижении заданной точности ε.

или

 

3.1.2. Приведение линейной системы к виду, удобному для итерации:

 

Сходимость накладывает жесткие условия на коэффициенты данной линейной системы . Однако, если , то с помощью линейного комбинирования уравнений системы, последнюю всегда можно заменить эквивалентной системой , такой, что условия сходимости будут выполнены. Умножим уравнение (3.1) на матрицу , где - матрица с малыми по модулю, одинаковыми элементами. Тогда будем иметь:

или , где и .

Все элементы матрицы ε выбираем одинаковыми из условия . Это обеспечивает выполнение достаточного условия сходимости метода.

 

Пример 3.1 Решить систему методом итераций в Mathcad с тремя верными цифрами после запятой

 

 

 

 

Точность вычислений

Решение исходной системы матричным методом

Линейными преобразованиями добиваемся диагонального преобладания.

 

2*I+II   II+2*III   II-3III

Преобразуем к виду, удобному для итераций.

 

 

 

 

 

q-это норма матрицы «с»

 

В качестве начального приближения возьмем столбец свободных членов, сделаем 6 приближений, вектор разностей между соседними приближениями обозначим z. Результаты поместим в матрицу x.

 

 

 

 

 

 

 

 

Ответ:

Рис. 3.1.Решение примера 3.1 в Mathcad

 







Дата добавления: 2014-11-12; просмотров: 1071. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия