Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод итераций для систем нелинейных уравнений





 

Пусть дана система двух уравнений с двумя неизвестными:

и требуется найти действительные корни системы с заданной степенью точности.

Предположим, что система допускает лишь изолированные корни. Число этих корней и их приближенные значения можно установить, построив кривые , и определив координаты их точек пересечения.

Для применения метода итераций система приводится к виду:

Функции и называются итерирующими. Алгоритм решения задается формулами

,

где и - некоторое начальное приближение.

Имеет место следующая теорема.

Теорема 4.1 Пусть в некоторой замкнутой окрестности имеется одно и только одно решение системы. Если:

1. функции и определены и непрерывно дифференцируемы в R,

2. начальные приближения , и все последующие приближения, xn, yn для n=1, 2принадлежат R,

3. в R выполнены неравенства

,

то процесс последовательных приближений сходится к решению системы, т.е.

.

Эта теорема останется верной, если условие 3 заменить условием

 

 

Оценка погрешности n -го приближения дается неравенством

, (4.2)

где M – наибольшее из чисел , входящих в неравенства. Сходимость метода итераций считается хорошей, если , при этом .

Пример 4.3 Решить нелинейную систему уравнений методом итераций в Mathcad с точностью 0, 005 Пусть дана система
Выразим из первого уравнения х, а из второго у и перепишем данную систему в виде:

 

 

Отделение корней произведем графически. Построим функции и на одном графике. Они имеют одну точку пересечения в области

D(0 < x < 0.25; -1.9 < y < -2.2). Выберем за начальное приближение для метода итераций x0 = 0.25, y0 = -1.9

Проверим условие сходимости теоремы в области D(а < x < b; c < y < d)
  Считать будем до тех пор, пока не достигнем нужной точности
  В данном случае метод итераций сходится достаточно медленно, так как значение М близко к единице   Ответ: x=0.151 y=-2.034

Рис.4.3. Решение примера 4.3 в Mathcad







Дата добавления: 2014-11-12; просмотров: 2285. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия