Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод итераций





 

Дана система, состоящая из n линейных уравнений с n неизвестными:

(3.1)

Обозначим через -матрицу коэффициентов системы (3.1), через - столбец свободных членов и через - столбец неизвестных.

Тогда систему (3.1) можно записать в виде матричного уравнения

.

Решением системы будут числа x1, x2, …, xn. Определитель системы не равен нулю. Предполагая, что диагональные коэффициенты разрешим первое уравнение системы относительно x1, второе – относительно x2 и т.д. Тогда получим равносильную систему, которая называется приведенной к виду, удобному для итераций.

, (3.2)

где (3.3)

Введем в рассмотрение матрицы:

и .

Тогда систему можем записать в матричном виде:

. (3.2')

Заметим, что систему (3.1) можно приводить к виду (3.2) любыми линейными преобразованиями. Систему (3.2) будем решать методом последовательных приближений, используя матричную запись. За нулевое приближение принимаем, например, столбец свободных членов: Далее последовательно строим матрицы-столбцы: и т.д.

Любое (k+1)-ое приближение вычисляют по формуле:

. (3.4)

Если последовательность приближений имеет предел , то этот предел является решением системы (3.2). В самом деле, переходя к пределу в равенстве (3.4), будем иметь: или т.е. предельный вектор является решением системы.

Напишем формулы приближений в развернутом виде:

Метод итераций – метод последовательных приближений. Процесс итерации хорошо сходится, т.е. число приближений, необходимых для получения корней системы с заданной точностью, невелико, если элементы матрицы a малы по абсолютной величине. Иными словами, для успешного применения процесса итерации модули диагональных коэффициентов системы должны быть велики по отношению к модулям недиагональных коэффициентов этой системы. Свободные члены при этом роли не играют.

Выясним, при каких достаточных условиях последовательность приближений имеет предел.

Теорема 3.1

Если для приведенной системы выполнено, по меньшей мере, одно из условий:

или ,

то процесс итерации сходится к единственному решению этой системы, независимо от выбора начального приближения.

В теореме (3.1) - «с» это значение максимальной суммы модулей элементов в строках, а «d» в столбцах матрицы α;. Эти числа называют нормой матрицы α по строкам и по столбцам соответственно.

Следствие из теоремы (3.1).

Для приведенной системы

полученной из системы по формулам (3.3)

метод итераций сходится, если выполнены неравенства

(i=1, 2, …n),

т.е. модули диагональных коэффициентов системы больше суммы модулей всех остальных коэффициентов.

 







Дата добавления: 2014-11-12; просмотров: 984. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия