Формы записи данных
Если а — точное значение некоторой величины а, а * — известное приближение к нему, то абсолютной погрешностью приближенного значения а* называют обычно некоторую величину Δ (а*), про которую известно, что
|а* - а| ≤ Δ (а*)
Относительной погрешностью приближенного значения называют некоторую величину δ (а*), про которую известно, что
Относительную погрешность часто выражают в процентах. Если а — известное число, например π, то иногда говорят об абсолютной Δ (а) и относительной δ (а) погрешностях задания этого числа: числа Δ (а) и δ (а) называют соответственно абсолютной и относительной погрешностью числа а. Значащими цифрами числа называют все цифры в его записи, начиная с первой ненулевой слева. Пример 1.1. У чисел а* = 0, 0 7045, а* = 0, 0 7045000 значащими цифрами являются подчеркнутые цифры. Число значащих цифр в первом случае равно 4, во втором — 7. Значащую цифру называют верной в широком смысле, если абсолютная погрешность числа не превосходит единицы разряда, соответствующего этой цифре.
Пример 1.2. а* = 0, 0 6045, Δ (а*)=0, 000003; а* = 0, 0 6045000, Δ (а*)=0, 0000007;
подчеркнутые цифры являются верными. Уславливаются называть значащую цифру верной в строгом смысле, если абсолютная погрешность не превосходит половины единиц разряда, соответствующих этой цифре. Если все значащие цифры верные, то говорят, что число записано со всеми верными цифрами.
Пример 1.3. При а* = 0, 0 3045, Δ (а*)= 0, 000003 число а* записано со всеми верными цифрами.
Иногда употребляется термин число верных цифр после запятой: подсчитывается число цифр после запятой от первой цифры до последней верной цифры. В последнем примере это число равно 5. Довольно часто информация о некоторой величине задается пределами ее измерения:
, (1.2)
например, . Принято записывать эти пределы с одинаковым числом знаков после запятой, Так как обычно достаточно грубого представления о погрешности, то в числах а1, а2 часто берут столько значащих десятичных цифр, сколько нужно, чтобы разность а1 — а2 содержала одну-две значащие цифр. Абсолютную или относительную погрешность обычно записывают в виде числа, содержащего одну или две значащих цифры. Информацию о том, что, а* является приближенным значением числа а с абсолютной погрешностью Δ (а*), иногда записывают в виде а = а*± Δ (а*), (1.3) числа а* и Δ (а*) принято записывать с одинаковым числом знаков после запятой. Например, записи
а = 1, 132 ±0, 004, а = 1, 132 ±4*10-3
относятся к общепринятым и означают, что
1, 132 - 0, 004 < а < 1, 132 + 0, 004.
Соответственно информацию о том, что а* является приближенным значением числа а с относительной погрешностью (а*), записывают в виде
a = a*(1± δ (a*)). (1.4)
Например, записи а = 1, 132 (1 ± 0, 004), а = 1, 132(1 ± 4 *10-3), а = 1, 132(1 ± 0, 4℅) означают, что (1 - 0, 004)1, 132 < а < (1 + 0, 004)1, 132. При переходе от одной из форм записи к другой надо следить, чтобы пределы измерения, указываемые новой формой записи, были шире старых, иначе такой переход будет незаконным. Например, при переходе от (1.2) к (1.3) должны выполняться неравенства
a*- Δ (a*) a1, a2 a* + Δ (a*),
при переходе от (1.3) к (1.4) — неравенства
а*(1 - δ (а*)) а* - Δ (а*), а* + Δ (а*) а*(1 + δ (а*)),
при переходе от (1, 4) к (1.3) должны выполняться противоположные неравенства (пределы всегда расширяются!). Следует различать принятую нами выше формально математическую и обиходную терминологии в рассуждении о величине погрешности. Если в постановке задачи говорится, что требуется найти решение с погрешностью 10-2, то чаще всего не имеется в виду обязательность этого требования. Предполагается лишь, что погрешность имеет такой порядок. Если, например, решение будет найдено с погрешностью 2-10-2, то такой результат, также удовлетворителен.
|