Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Представление функции в виде полинома Жегалкина





 

1. Представим любую функцию формулой над { x 1& x 2, } и сделаем замену = x Å 1. Этот способ удобен, если функция задана формулой.

Пример 2. (x 1 (x 2 x 3))(x 1 Ú x 2) x 3 = (x 1Ú x 2 Ú x 3)(x 1 Ú x 2) x 3 = (` x 1 x 2 Ú x 1 x 3 Ú x 1 x 2 Ú x 2 Ú x 2 x 3) x 3 = (` x 1 x 3 Ú x 2) x 3 = x 1 x 3 x 2 x 3 = ((x 1 x 3Å 1) x 2Å 1) x 3 = x 1 x 2 x 3Å x 2 x 3Å x 3.

Надо помнить, что четное число одинаковых слагаемых в сумме по mod 2 дает 0.

2. Метод неопределенных коэффициентов. Он удобен, если функция задана таблицей.

Пример 3. Запишем с неопределенными коэффициентами полином Жегалкина для функции трех переменных f (x 1, x 2, x 3) = (01101001) = а 0 Å а 1 х 1Å Å а 2 х 2 Å а 3 х 3 Å b 1 x 1 x 2 Å b 2 x 2 x 3 Å b 3 x 1 x 3 Å cx 1 x 2 x 3. Затем находим коэффициенты, используя значения функции на всех наборах. На наборе (0, 0, 0) f (0, 0, 0) = 0, с другой стороны, подставив этот набор в полином, получим f (0, 0, 0) = а 0, отсюда а 0 = 0. f (0, 0, 1) = 1, подставив набор (0, 0, 1) в полином, получим: f (0, 0, 1) = а 0 Å а 3, т.к. а 0 = 0, отсюда а 3 = 1. Аналогично, f (0, 1, 0) = 1 = а 2, f(0, 1, 1) = 0 = а 2 Å а 3 Å b 2 = b 2 = 0; а 1 = 1; 0 = а 1 Å а 3 Å b 3 = b 3 = 0; 0 = а 1 Å а 2 Å b 1 = b 1 = 0; 1 = 1 Å 1 Å 1 Å c; c = 0; f (x 1, x 2, x 3) = x 1 Å x 2 Å x 3.

3. Многочлен Жегалкина можно получить также с помощью треугольника Паскаля по единицам его левой стороны по таблице следующим образом. Построим многочлен Жегалкина для функции f = (10011110). Верхняя сторона треугольника есть функция f. Любой другой элемент треугольника есть сумма по модулю для двух соседних элементов предыдущей строки. Левая сторона треугольника для функции f содержит шесть единиц. Многочлен Жегалкина будет содержать шесть слагаемых. Первая единица треугольника соответствует набору (000). Первое слагаемое многочлена есть 1. Третья снизу единица в левой стороне треугольника соответсвует набору (101). В качестве слагаемого многочлена берем x 1 x 3. Аналогично для других единиц треугольника. Слева от наборов показаны слагаемые многочлена Жегалкина.

  N x 1 x 2 x 3 f Треугольник Паскаля
x 3 x 2 x 2 x 3 x 1 x 1 x 3 x 1 x 2 x 1 x 2 x 3     1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0  
                 

 

Тогда







Дата добавления: 2014-11-12; просмотров: 984. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия