Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Жегалкина





 

Каждая функция из может быть представлена в виде полинома Жегалкина единственным образом.

Здесь единственность понимается с точностью до порядка слагаемых в сумме и порядка сомножителей в конъюнкциях:

, s = 0, 1,..., n. Доказательство. Любая функция из Р 2 может быть представлена формулой над { x 1 & x 2, x 1Å x 2, 0, 1}, а эта формула после раскрытия всех скобок и приведения подобных членов дает полином Жегалкина. Докажем единственность представления. Рассмотрим функции f (x 1,..., xn) от n переменных. Мы знаем, что всего таких функций, т.е. их таблиц истинности, 2 n. Подсчитаем число различных полиномов Жегалкина от n переменных, т.е. число вариаций вида: . Число наборов равно числу всех подмножеств множества { x 1,..., xn }, сюда входит и пустое множество (если s = 0). Число подмножеств множества из n элементов равно 2 n, а так как каждый набор входит с коэффициентом , принимающим два значения: 0 или 1, то число всевозможных полиномов будет . Так как каждому полиному соответствует единственная функция, число функций от n переменных равно числу полиномов, то каждой функции будет соответствовать единственный полином.

Определение. Функция f (x 1,..., xn), полином Жегалкина для которой имеет следующий линейный относительно переменных вид: f = а 0 Å а 1 х 1 Å а 2 х 2 Å... Å аnхn, называется линейной.

Лемма о нелинейной функции. Суперпозицией нелинейной функции, отрицания и константы 1 можно получить конъюнкцию.

Доказательство. Пусть f (x 1,..., xn) – нелинейная функция. Тогда полином Жегалкина содержит для нее слагаемое, в котором присутствует произведение xixj. Будем считать для простоты, что x 1 x 2 в многочлене Жегалкина является этим произведением. Произведя группировку слагаемых, функцию f представим в виде

Функция h 0 не есть тождественный нуль, иначе в полиноме Жегалкина отсутствует слагаемое с произведением x 1 x 2. Тогда существует набор (a 3, …, an) из 0 и 1, для которого h 0(a 3, …, an) = 1. Пусть h 1 (a 3, …, an) = a, h 2(a 3, …, an) = b, h 3(a 3, …, an) = c. Тогда

Построим функцию:

где d = ab Å c. Если d = 0, то h (x 1, x 2) = x 1 x 2. Если d = 1, то h (x 1, x 2) = x 1 x 2 Å 1 и тогда Лемма доказана.

Функция f (x 1,..., x n) сохраняет константу a Î {0, 1}, если f (a, …, a) = a.

Пример 4. Функция xy сохраняет 0, сохраняет 1. Функция x ® y сохраняет 1 и не сохраняет 0.







Дата добавления: 2014-11-12; просмотров: 1320. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия