Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Поста о полноте





Для того чтобы система функций была полной, необходимо и достаточно, чтобы она не содержалась целиком ни в одном из классов T 0, T 1, L, S, M.

Доказательство. Докажем необходимость этого условия. Пусть система

N = { f 1, f 2,... fs,...} полна в Р 2, покажем, что тогда она не лежит целиком в Q, где через Q обозначим любой из классов T 0, T 1, L, S, M. Докажем от противного, пусть N Í Q, очевидно, [ N ] Í [ Q ] = Q, но [ N ] = P 2, т.к. N – полна в Р 2, отсюда Р 2= Q, но это не так. Необходимость доказана.

Докажем достаточность. Пусть F = { f 0, f 1, fL, fm, fs }, где f 0Ï T 0, f 1Ï T 1, fL Ï L, fs Ï S и fm Ï M. Покажем, что суперпозицией функций системы F можно получить полную систему G = { x 1& x 2, }.

1. Пусть g (x) = f 0(x, …, x). Тогда g (0) = f (0, …, 0) = 1. Далее возможны два случая:

g (1) = 1. Тогда g (x) º 1. Функция h (x) = f 1(g (x), …, g (x)) = f 1(1, …, 1) = 0, т.е. h (x) º 0. Получили константы 0 и 1;

g(1) = 0. Тогда g (x) = . По лемме о несамодвойственной функции суперпозицией над { fs, } можно получить одну из констант, например, 0. Тогда f 0(0, …, 0) = 1 есть другая константа.

В обоих случаях получили обе константы.

2. По лемме о немонотонной функции суперпозицией над { fm, 0, 1} можно получить отрицание.

3. По лемме о нелинейной функции суперпозицией над { fL, 1, } можно получить конъюнкцию. Теорема доказана.

Следствие. Всякий замкнутый класс функций из Р 2, не совпадающий с Р 2 содержится, по крайней мере, в одном из замкнутых классов T 0, T 1, L, S, M. Действительно, если N не является подмножеством Q, то [ N ] = P 2, что неверно.







Дата добавления: 2014-11-12; просмотров: 905. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия