Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полные системы





1. P 2 – полная система.

2. Система M ={ x 1& x 2, x 1Ú x 2, } – полная система, т.к. любая функция алгебры логики может быть записана в виде формулы через эти функции.

Пример 1. Неполные системы: { }, {0, 1}.

 

Лемма (достаточное условие полноты)

 

Пусть система U = { f 1, f 2,..., fs,...} полна в Р 2. Пусть B = { g 1, g 2,..., gk,...} – некоторая система из Р 2, причем любая функция fi Î U может быть выражена формулой над B, тогда система B полна в Р 2.

Доказательство. Пусть h(x1,..., xn) Î P2, т.к. U полна в Р2, то h(x1,..., xn) = =N[f1,..., fs,...] = N[L1[g1,..., gk],..., Ls[g1,..., gk],...] = U[g1,..., gk]. Здесь мы воспользовались тем, что для любого i n fi может быть выражена формулой над B, поэтому fi=Li[gi,..., gk].

3. Система { x 1Ú x 2, } – полна в P 2.

Возьмем в качестве полной в Р 2 системы U ={ x 1Ú x 2, , x 1& x 2}, B ={ x 1Ú x 2, }. Надо показать, что x 1& x 2 представляется формулой над B. Действительно, по правилу Де Моргана получим: x 1& x 2= .

С помощью этой леммы докажем полноту еще ряда систем.

4. Система { x 1& x 2, } – полна в Р 2.

5. Система { x 1| x 2} полна в Р 2. Для доказательства возьмем в качестве полной в Р 2 системы U = { x 1& x 2, } и выразим х 1& х 2 и через х 1| x 2 :

= x 1 | x 1, x 1 & x 2 = = (x 1| x 2)|(x 1| x 2).

6. Система { x 1 x 2} полна в Р 2. U = { x 1Ú x 2, }, = x 1 x 1, x 1Ú x 2 = = (x 1 x 2) (x 1 x 2).

7. Система { x 1& x 2, x 1Å x 2, 0, 1}, U = { x 1& x 2, }, = x 1Å 1.

Следствие. Полином Жегалкина.

f (x 1,..., xn) Î P 2, представим ее в виде формулы через конъюнкцию и сумму по модулю два, используя числа 0 и 1. Это можно сделать, так как { x 1& x 2, x 1Å x 2, 0, 1} полна в Р 2. В силу свойства x & (y Å z) = xy Å xz можно раскрыть все скобки, привести подобные члены, и получится полином от n переменных, состоящий из членов вида х х ... х , соединенных знаком Å. Такой полином называется полиномом Жегалкина.

Общий вид полинома Жегалкина:

где , s = 0, 1,..., n, причем при s = 0 получаем свободный член а 0.

 







Дата добавления: 2014-11-12; просмотров: 802. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия