Двоичная система счисления
Двоичная (бинарная) система счисления имеет основание 2. Ее алфавит – цифры 0 и 1. Для перевода числа из двоичной системы счисления в десятичную также справедливо правило (6). Представим в десятичном виде число 1101(2), или, что то же самое, & 1101 (& - амперсанд, - этим символом принято указывать то, что следующая за ним запись двоичная). 1101(2)=1* 2 3+1* 2 2+0* 2 1+1* 2 0=1*8+1*4+0*2+1*1=13(10)
Но двоичная система имеет некоторые приятные особенности, т.к. коэффициентами при степенях двойки в ней могут быть только либо нули (и тогда можно просто игнорировать разряд числа, имеющий значение “0”), либо единицы (умножение на “1” также можно опустить). Т.е. достаточно просуммировать “два в соответствующей степени” только в тех позициях двоичного числа, в которых находятся единицы. Степень же, в которую нужно возводить число 2, равна номеру позиции. Арифметические операции в любой позиционной системе счисления также имеют общую логику. Таблица 5.
Каждый разряд двоичного числа имеет информационную емкость 1 бит. На основании одного двоичного разряда можно закодировать только два десятичных числа - & 0=0(10), & 1=1(10), на основании двух двоичных разрядов можно закодировать уже четыре десятичных числа – & 00=0(10), & 01=1(10), & 10=2(10), & 11=3(10), тремя двоичными разрядами можно представить восемь десятичных чисел и т.д. в соответствии с формулой Хартли (2). Таблица 6.
Мы видим, что добавление каждого следующего разряда вдвое увеличивает количество двоичных комбинаций. Графически это может быть представлено так: Рис. 15. Каждый следующий разряд двоичного числа удваивает количество возможных комбинаций из нулей и единиц.
Таблицу степеней числа 2 от 20 до 210 следует знать наизусть. Таблица 7.
Открытие двоичного способа представления чисел приписывают китайскому императору Фо Ги, жизнь которого относится к 4-му тысячелетию до новой эры. Известный немецкий математик Лейбниц (1646-1716) в 1697 г. разработал правила двоичной арифметики. Он подчеркивал, что " вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот, является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок". Блестящие предсказания Лейбница сбылись только через 2, 5 столетия, когда именно двоичная система счисления нашла применение в качестве универсального способа кодирования информации в компьютерах.
|